帳號:guest(18.118.30.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許芯瑜
作者(外文):Khor, Hsin-Yu
論文名稱(中文):電子束對二硒化鎢及二硫化鎢電晶體特性的影響
論文名稱(外文):Impact of Electron Beam to Tungsten Diselenide and Tungsten Disulfide Transistors
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):李奎毅
林永昌
口試委員(外文):Lee, Kuei-Yi
Lin, Yung-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063518
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:76
中文關鍵詞:電子束微影電晶體二硒化鎢二硫化鎢
外文關鍵詞:transistorelectron beam lithographyTungsten DisulfideTungsten Diselenide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:560
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
過渡金屬硫族化物 (Transition -metal dichalcogenides, TMDCs)為二維層狀材料,可以單層穩定存在於環境中,而由於費米能階釘札的效應,金屬半導體接觸的好壞對元件效能的影響很大,而電子束微影被廣泛利用在製作元件電極中,然而電子束微影的過程中,電子束不可避免的會透過PMMA電子阻影響到所使用的通道材料,造成通道材料產生缺陷可能加強費米能階釘札的效應,為了探討電子束微影對金屬半導體接觸的影響,我們以二硫化鎢及二硒化鎢為通道材料製作了三種不同製程的金屬半導體接觸,分別是石墨烯接觸、光學微影及電子束微影的電晶體,並透過低溫量測探討其金屬半導體接觸特性,發現其會造成臨界電壓往正端偏移及次臨界擺幅的下降。
Electrical metal contact to two-dimensional material is crucial to device performance due to strong fermi level pinning. Since material may be damaged by electron beam lithography during the process, we try to look into how electron beam affect the material. By adding the area dose, electron beam might cause more defects on the material which cause fermi level pinning. We investigate how electron beam damage the material by comparing the transfer characteristic of Tungsten Diselenide and Tungsten Disulfide field effect transistor using photolithography and electron beam lithography with different area dose respectively.
Abstract...I
論文摘要...II
目 錄 ...IV
第一章 緒論...1
1.1 半導體技術的演變 ...1
1.2 矽製程的微縮與限制 ...3
1.3 低維材料的發展...5
1.4 論文結構...8
第二章 過渡金屬二硫族化物介紹...9
2.1 過渡金屬二硫族化物的組成...9
2.2 過渡金屬二硫族化物的特性...10
2.2.1 晶體結構 ...10
2.2.2 電子能帶... 12
2.3 過渡金屬二硫族化物材料製備方法...14
2.3.1 機械剝離法 (Mechanical exfoliation)...15
2.3.2 化學氣相沉積法 (Chemical vapor deposition)...15
2.4 材料檢測方式...17
2.4.1 拉曼散射頻譜...17
2.4.2 光致螢光光譜...20
第三章 半導體材料與金屬接觸探討...22
3.1 傳統塊材半導體之金屬接觸特性...22
3.2 過渡金屬硫族化物之金屬接觸特性...29
3.2.1 過渡金屬硫族化物與金屬接觸機制...29
3.2.2 接觸金屬與費米能階釘扎問題...31
3.2.3 電子束對過渡金屬硫族化物的影響...35
第四章 元件製程及材料檢測...38
4.1 材料成長與檢測...38
4.1.1 二硒化鎢及二硫化鎢成長...38
4.1.2 石墨烯成長...41
4.1.3 光致螢光光譜檢測...45
4.2 元件製作流程...45
第五章 實驗量測與結果分析...53
5.1 電晶體量測方法與量測系統...53
5.2 電晶體電性量測結果與分析...54
5.3 電晶體變溫量測結果與分析...59
第六章 實驗結果與未來展望...69
參考文獻...70
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi­conductor triode,” PR, vol. 74, pp. 230–231, July 1948.
[2] logic, “https://computerhistory.org/revolution/digital­logic/12/273,” [3] transistor https://www.computerhistory.org/atchm/whoinventedthetransistor/.
[4] circuit https://www.allaboutcircuits.com/news/jackkilbyandtheworldfirstinte­ gratedcircuit/.
[5] revolution https://ethw.org/TransistorsandthComputerRevolution.
[6] moores https://www.extremetech.com/extreme/210872extremetechexplain­ swhatismooreslaw.
[7] finfet https://www.androidauthority.com/4nmprocessingnode812959/.
[8] A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature, vol. 499, p. 419, July 2013.
[9] M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: A review of graphene,” Chem. Rev., vol. 110, pp. 132–145, Jan. 2010.
[10] application https:// www.sciencedirect.com/ science/ article/ pii/
S1369702116302917?via3Dihub.
[11] A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. Castro Neto, “Phosphorene: from theory to applications,” Nature Reviews Materials, vol. 1, p. 16061, Aug. 2016.
[12] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watan­ abe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride sub­ strates for high­quality graphene electronics,” Nature Nanotechnology, vol. 5, p. 722, Aug. 2010.
[13] H. Liu, A. T. Neal, and P. D. Ye, “Channel length scaling of mos2 mosfets,” ACS Nano, vol. 6, pp. 8563–8569, Oct. 2012.
[14] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two­ dimensional materials,” Nature Nanotechnology, vol. 9, p. 768, Oct. 2014.
[15] F. Schwierz, J. Pezoldt, and R. Granzner, “Two­dimensional materials and their prospects in transistor electronics,” Nanoscale, vol. 7, no. 18, pp. 8261– 8283, 2015.
[16] M. Chhowalla, H. S. Shin, G. Eda, L.­J. Li, K. P. Loh, and H. Zhang, “The chemistry of two­dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, p. 263, Mar. 2013.
[17] Y. Ma, B. Liu, A. Zhang, L. Chen, M. Fathi, C. Shen, A. N. Abbas, M. Ge, M. Mecklenburg, and C. Zhou, “Reversible semiconducting­to­metallic phase transition in chemical vapor deposition grown monolayer wse2 and applica­ tions for devices,” ACS Nano, vol. 9, pp. 7383–7391, July 2015.
[18] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discus­sion and interpretation of the observed optical, electrical and structural prop­ erties,” Advances in Physics, vol. 18, pp. 193–335, May 1969.
[19] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain effects on electronic structures oftransition metal dichalcogenides: 2h­ mX2 semiconductors (m = mo, w; x = s, se, te),” PRB, vol. 85, p. 033305, Jan. 2012.
[20] H. Zhou, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, X. Huang, Y. Liu, N. O. Weiss, Z. Lin, Y. Huang, and X. Duan, “Large area growth and electrical properties of p­type wse2 atomic layers,” Nano Lett., vol. 15, pp. 709–713, Jan. 2015.
[21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomi­ cally thin carbon films,” Science, vol. 306, p. 666, Oct. 2004.
[22] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two­dimensional atomic crystals,” Proc Natl Acad Sci US A, vol. 102, p. 10451, July 2005.
[23] J. D.Plummer, Silicon VLSITechnology. 2000. [24] J.­K. Huang, J. Pu, C.­L. Hsu, M.­H. Chiu, Z.­Y. Juang, Y.­H. Chang, W.­H. Chang, Y. Iwasa, T. Takenobu, and L.­J. Li, “Large­area synthesis of highly crystalline wse2 monolayers and device applications,” ACS Nano, vol. 8, pp. 923–930, Jan. 2014.
[25] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of lower symmetry and dimensionality on raman spectra in two­
dimensional wse2,” PRB, vol. 88, p. 195313, Nov. 2013.
[26] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Al­ brecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and raman response ofmono­ layer mos2, mose2, and wse2,” Opt. Express, vol. 21, pp. 4908–4916, Feb. 2013.
[27] M. Kiguchi and K. Saiki, “Metal­induced gap states at insulator/metal inter­ faces,” E­journal ofSurface Science and Nanotechnology, vol. 2, pp. 191– 199, Jan. 2004.
[28] J. Su, L. Feng, Y. Zhang, and Z. Liu, “Defect induced gap states in monolayer mos2 control the schottky barriers ofpt­mmos2 interfaces,” Appl. Phys. Lett., vol. 110, p. 161604, Oct. 2019.
[29] R. T. Tung, “Formation of an electric dipole at metal­semiconductor inter­ faces,” PRB, vol. 64, p. 205310, Nov. 2001.
[30] C. A. Mead and W. G. Spitzer, “Fermi level position at metal­semiconductor interfaces,” PR, vol. 134, pp. A713–A716, May 1964.
[31] . 伍國, 半導體元件物理學. 國立交通大學出版社, 2008.
[32] C. Kenney, K. C. Saraswat, B. Taylor, and P. Majhi, “Thermionic field emis­ sion explanation for nonlinear richardson plots,” IEEE Transactions on Elec­ tron Devices, vol. 58, no. 8, pp. 2423–2429, Aug.
[33] J. M. Larson and J. P. Snyder, “Overview and status of metal s/d schottky­ barrier mosfet technology,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1048–1058, May.
[34] A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta,
K. Wang, J. Gelatos, S. E. Mohney, and S. Datta, “Fermi level depinningand contact resistivity reduction using a reduced titania interlayer in n­silicon metal­insulator­semiconductor ohmic contacts,” Appl. Phys. Lett., vol. 104, p. 112101, Oct. 2019.
[35] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes by fermi level depinning using metal/nickel oxide/silicon contacts,” Appl. Phys. Lett., vol. 105, p. 182103, Oct. 2019.
[36] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two­ dimensional semiconductors,” Nature Materials, vol. 14, p. 1195, Nov. 2015.
[37] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition­metal dichalcogenide semiconduc­ tors,” PRX, vol. 4, p. 031005, July 2014.
[38] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.­J. Shin, S. Park, and W. J. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, pp. 1588– 1596, Feb. 2017.
[39] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism of partial fermi level pinning at metal­mos2 interfaces,” Nano Lett., vol. 14, pp. 1714–1720, Apr. 2014.
[40] Y. Liu, J. Guo, E. Zhu, L. Liao, S.­J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, and X. Duan, “Approaching the schottky­mott limit in van der waals metal­semiconductor junctions,” Nature, vol. 557, pp. 696–700, May 2018.
[41] W. M. Parkin, A. Balan, L. Liang, P. M. Das, M. Lamparski, C. H. Naylor, J. A.
Rodríguez­Manzo, A. T. C. Johnson, V. Meunier, and M. Drndić, “Raman F. Li, F. Gao, M. Xu, X. Liu, X. Zhang, H. Wu, and J. Qi, “Tuning transport and photoelectric performance of monolayer mos2 device by e‐beam irradia­ tion,” Advanced Materials Interfaces, vol. 5, Mar. 2018.
[43] F. Giubileo, L. Iemmo, M. Passacantando, F. Urban, G. Luongo, L. Sun, G. Amato, E. Enrico, and A. Di Bartolomeo, “Effect of electron irradiation on the transport and field emission properties of few­layer mos2 field­effect transistors,” J. Phys. Chem. C, vol. 123, pp. 1454–1461, Jan. 2019.
[44] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of high­quality monolayer ws2 layers on sapphire and imaging its grain bound­ ary,” ACS Nano, vol. 7, pp. 8963–8971, Oct. 2013.
[45] H. Terrones, E. D. Corro, S. Feng, J. M. Poumirol, D. Rhodes, D. Smirnov, N. R. Pradhan, Z. Lin, M. A. T. Nguyen, A. L. Elías, T. E. Mallouk, L. Balicas, M. A. Pimenta, and M. Terrones, “New first order raman­active modes in few layered transition metal dichalcogenides,” Scientific Reports, vol. 4, p. 4215, Feb. 2014.
[46] W. Shi, M.­L. Lin, Q.­H. Tan, X.­F. Qiao, J. Zhang, and P.­H. Tan, “Raman and photoluminescence spectra oftwo­dimensional nanocrystallites ofmonolayer ws2and wse2,” 2D Materials, vol. 3, p. 025016, Apr. 2016.
[47] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on ni and cu by carbon isotope labeling,” Nano Lett., vol. 9, pp. 4268–4272,
Dec. 2009.
[48] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growth of large­area graphene films from metal­carbon melts,” Journal of Applied Physics, vol. 108, p. 094321, Nov. 2019.
[49] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, pp. 51–87, Apr. 2009.
[50] Z. Wu, Z. Luo, Y. Shen, W. Zhao, W. Wang, H. Nan, X. Guo, L. Sun, X. Wang, Y. You, and Z. Ni, “Defects as a factor limiting carrier mobility in wse2: A spectroscopic investigation,” Nano Research, vol. 9, pp. 3622– 3631, Dec. 2016.
[51] Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect ac­ tivated photoluminescence in wse2 monolayer,” J. Phys. Chem. C, vol. 121, pp. 12294–12299, June 2017.
[52] B. Radisavljevic and A. Kis, “Mobility engineering and a metal­insulator tran­ sition in monolayer mos2,” Nature Materials, vol. 12, pp. 815–820, Sept. 2013.
[53] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, “Threshold voltage extraction methods for mos transistors,” in 2000 International Semiconduc­ tor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486),
vol. 1, pp. 371–374 vol.1, 10­1.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *