帳號:guest(18.221.211.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許晉瑋
作者(外文):Hsu, Chin-Wei
論文名稱(中文):常閉型P型氮化鎵高電子遷移率電晶體之研製
論文名稱(外文):Design and Fabrication of Enhancement mode P-GaN HEMT
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):劉致為
吳肇欣
劉嘉哲
口試委員(外文):Liu, Chee-Wee
Wu, Chao-Hsin
Liu, Jia-Zhe
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063514
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:80
中文關鍵詞:增加型常閉型高電子遷移率電晶體氮化鎵金氧半閘極P型氮化鎵
外文關鍵詞:Enhancement modenormally-offHEMTGaNMIS gateP-GaN
相關次數:
  • 推薦推薦:0
  • 點閱點閱:535
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要是探討常閉型P型氮化鎵高電子遷移率電晶體的設計與製作。本研究主要分成兩部分,第一部分是應用於高功率元件,第二部分是應用於高頻微波元件。
在高功率元件的應用中,我們探討利用增長閘極與汲極的距離以增加崩潰電壓。我們選擇利用閘極與汲極的距離為15μm時,能兼具電流密度與崩潰電壓的最佳值。此元件的臨界電壓為0.6V,最大汲極飽和電流密度約378mA/mm,並達到崩潰電壓615V。另外在閘極與汲極的距離為20μm時,能達到約1390V的崩潰電壓。我們也對元件進行動態以及變溫的可靠度量測,以驗證製程與磊晶片緩衝層的特性。
在高頻微波元件的應用中,我們分別探討MS gate與MIS gate兩種閘極結構的特性分析。另外在MIS gate的研究中,我們引進新的元件結構。與傳統結構相比,元件的操作特性大幅提升。我們使元件的臨界電壓達到1.5V,最大汲極飽和電流密度約412mA/mm,最大轉導值101.3mS/mm,改善在元件開啟狀態時的閘極漏電流。在閘極偏壓5V時,閘極漏電流僅7.3*10-9mA/mm。而在頻率表現方面,經小訊號的分析,在截止頻率與最大震盪頻率分別達到6.0與9.8GHz。
In this thesis, our research is mainly about design and fabrication of enhancement mode P-GaN HEMT. We have two topics. The one is for high power device, the other one is about high frequency RF device.
In the first section, we increase gate to drain spacing (Lgd) to increase breakdown voltage. When Lgd is 15μm, the deivce can have high performance both in current density and breakdown voltage. The deivce with threshold voltage (Vth) 0.6V, saturated drain current density 378mA/mm and breakdown voltage 615V. We also let the device reaches breakdown voltage 1390V when Lgd enlarges to 20μm. On the other hand, we let the device under temperature variation and pulse I-V dynamic measurement to ensure process and epitaxy buffer layer characteristics.
The second part is about RF application device. We compare MS gate and MIS gate structure device characteristics. Also, We introduce new structure for MIS gate device. Comparing to conventional structure, the device performance improves greatly. The deivce Vth is 1.5V, satrurated current density 412mA/mm, maximum transconductance (gm) 101.3mS/mm and we improves gate leakage current in on-state. The gate leakage current is 7.3*10-9mA/mm when gate bias is 5V. And cut-off frequency and maximum oscillation frequency are 6.0 and 9.8 GHz, respectively.
摘要 I
Abstract II
致謝 III
Table of Contents V
List of Figures Ⅷ
List of Tables XII
Chap 1 Introduction 1
1-1 Background research of Gallium Nitride (GaN) 1
1-2 GaN HEMT development and application 3
1-3 AlGaN/GaN heterojunction and how two-dimensional electron gas(2DEG) induced 5
1-4 Enhancement mode HEMT (E-mode HEMT) 7
1-5 Motivation 9
1-6 Thesis organization 10
Chap 2 Fundamental principles of HEMT and device analysis 11
2-1 HEMT working principle and mechanism 11
2-1-1 Conventional D-mode HEMT working principle 11
2-1-2 P-GaN HEMT working principle 14
2-2 Transmission Line measurement (TLM) 16
2-3 Pulse I-V measurement 20
2-4 Small signal characteristics 22
2-4-1 Scattering parameters (S parameters) 22
2-4-2 RF performance figures of merit 23
Chap 3 Design and Fabrication of P-GaN HEMT 25
3-1 Process flow 25
3-1-1 Process flow of MS POWER HEMT 25
3-1-2 Process flow of MS/MIS RF HEMT 31
3-2 Epitaxy structure 40
3-3 Experiment design 41
3-3-1 Schottky gate P-GaN power HEMT 41
3-3-2 MS/MIS gate P-GaN RF HEMT 43
3-4 Measurement system 46
3-4-1 DC characteristics 46
3-4-2 Small signal measurement 48
Chap 4 Results and discussion 49
4-1 MS P-GaN Power HEMT 49
4-1-1 Etching depth and TLM measurement 50
4-1-2 DC characteristics 52
4-1-3 Pulse I-V dynamic characteristics 57
4-1-4 Thermal stability characteristics 60
4-2 P-GaN RF HEMT 62
4-2-1 Etching depth and TLM measurement 63
4-2-2 MS P-GaN RF HEMT characteristics 65
4-2-3 MIS P-GaN RF HEMT DC characteristics 67
4-2-4 Comparison with MIS and MS RF P-GaN HEMT 70
Chap 5 Conclusions 76
References 78
1. H. Amano, Y. Baines, et al., The 2018 GaN power electronics roadmap. Journal of Physics D: Applied Physics, 2018. 51(16): p. 163001.
2. 黃智方 and 張庭輔, 氮化鎵功率元件簡介, in 電子資訊. 2014. p. 30-40.
3. Tanya Paskova, Drew A Hanser, and Keith R %J Proceedings of the IEEE Evans, GaN substrates for III-nitride devices. 2009. 98(7): p. 1324-1338.
4. Takashi J Japanese journal of applied physics Mimura, Development of high electron mobility transistor. 2005. 44(12R): p. 8263.
5. High-electron-mobility transistor. 2019-01-02; Available from: https://en.wikipedia.org/wiki/High-electron-mobility_transistor.
6. 第三代半導體材料將全面取代第一、二代半導體材料. 2018-10-11; Available from: https://kknews.cc/zh-tw/news/apqv26x.html.
7. 拓墣產研, GaN 在 5G 射頻應用將脫穎而出. 科技新報, 2018-11-06.
8. O Ambacher, J Smart, et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. 1999. 85(6): p. 3222-3233.
9. Yong Cai, Yugang Zhou, et al., Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode. 2006. 53(9): p. 2207-2215.
10. WB Lanford, T Tanaka, et al., Recessed-gate enhancement-mode GaN HEMT with high threshold voltage. 2005. 41(7): p. 449-450.
11. Ting-En Hsieh, Edward Yi Chang, et al., Gate recessed quasi-normally OFF Al 2 O 3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer. 2014. 35(7): p. 732-734.
12. Norio Tsuyukuchi, Kentaro Nagamatsu, et al., Low-leakage-current enhancement-mode AlGaN/GaN heterostructure field-effect transistor using p-type gate contact. 2006. 45(3L): p. L319.
13. Yasuhiro Uemoto, Masahiro Hikita, et al., Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation. 2007. 54(12): p. 3393-3399.
14. Oliver Hilt, Arne Knauer, et al. Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer. in 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD). 2010. IEEE.
15. Ramakrishna Vetury, Naiqain Q Zhang, et al., The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. 2001. 48(3): p. 560-566.
16. Takashi Mizutani, Yutaka Ohno, et al., A study on current collapse in AlGaN/GaN HEMTs induced by bias stress. 2003. 50(10): p. 2015-2020.
17. Masafumi Tajima and Tamotsu %J Japanese Journal of Applied Physics Hashizume, Impact of gate and passivation structures on current collapse of AlGaN/GaN high-electron-mobility transistors under off-state-bias stress. 2011. 50(6R): p. 061001.
18. T Kakegami, S Ohi, et al. Study of current collapse in AlGaN/GaN HEMTs passivated with sputter-deposited SiO 2 and SiN x. in 2014 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). 2014. IEEE.
19. Transistor.2019/06/07; Available from: https://en.wikipedia.org/wiki/Transistor.
20. Yuanzheng Yue, Yue Hao, et al., AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3 Interfacial Passivation Layer Grown by Atomic Layer Deposition. 2008. 29(8): p. 838-840.
21. Han-Yin Liu, Bo-Yi Chou, et al., Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique. 2012. 60(1): p. 213-220.
22. Yue Yuan-Zheng, Hao Yue, et al., GaN MOS-HEMT using ultra-thin Al2O3 dielectric grown by atomic layer deposition. 2007. 24(8): p. 2419.
23. Greco Giuseppe, AlGaN/GaN heterostructures for enhancement mode transistors, in Physics and astronomy. 2012, University of Catania: Itaia, Catania.
24. Giuseppe Greco, Ferdinando Iucolano, and Fabrizio %J Materials Science in Semiconductor Processing Roccaforte, Review of technology for normally-off HEMTs with p-GaN gate. 2018. 78: p. 96-106.
25. Aaron Pereira, Anthony Parker, and Larry Dunleavy. Pulsed IV characterization of GaN HEMTs for high frequency, high efficiency integrated power converters. in 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. 2014. IEEE.
26. Scattering parameters. 15 June 2019; Available from: https://en.wikipedia.org/wiki/Scattering_parameters.
27. A Polyakov, S Sinaga, et al., High-resistivity polycrystalline silicon as RF substrate in wafer-level packaging. 2005. 41(2): p. 100-101.
28. 鄒權煒 and 徐碩鴻, 應用於射頻之矽基板氮化鎵元件技術. 奈米通訊, 2017. 24卷 No.4: p. 27-32.
29. Keysight. Keysight B1505A. Available from: https://www.keysight.com/zh-TW/pd-1480796-pn-B1505A/power-device-analyzer-curve-tracer?cc=TW&lc=cht.
30. Gerrit Lükens, Herwig Hahn, et al., Self-aligned process for selectively etched p-GaN-gated AlGaN/GaN-on-Si HFETs. 2018. 65(9): p. 3732-3738.
31. B. Jayant Baliga, Fundamentals of Power Semiconductor Devices. 2008: Springer.
32. Yun-Hsiang Wang, Yung C Liang, et al., Modelling temperature dependence on AlGaN/GaN power HEMT device characteristics. 2013. 28(12): p. 125010.
33. A Pérez-Tomás, A Fontsere, et al., Temperature impact and analytical modeling of the AlGaN/GaN-on-Si saturation drain current and transconductance. 2012. 27(12): p. 125010.
34. Shin-Yi Ho, Chun-Hsun Lee, et al., Suppression of current collapse in enhancement mode GaN-based HEMTs using an AlGaN/GaN/AlGaN double heterostructure. 2017. 64(4): p. 1505-1510.
35. Taofei Pu, Xiao Wang, et al., Normally-Off AlGaN/GaN Heterojunction Metal-Insulator-Semiconductor Field-Effect Transistors With Gate-First Process. 2018. 40(2): p. 185-188.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *