帳號:guest(3.145.183.205)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳怡嘉
作者(外文):Chen, Yi-Jia
論文名稱(中文):高解析小像素近紅外光影像轉換可見光器研製
論文名稱(外文):Optical Upconversion Device of High Resolution Small Pixel Array for NIR band
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):羅俊傑
李世昌
吳忠幟
口試委員(外文):Luo, Jiunn-Jye
LI, Shi Chang
Wu, Chung-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063509
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:82
中文關鍵詞:升頻轉換器紅外光可見光光轉電
外文關鍵詞:up-converterphotodetectorlight-emitting diodeInGaAs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:867
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
此論文中,我們製作像素尺寸為10 µm,像數間距為20 µm的陣列升頻感測器,透過短波紅外光檢測器,吸收紅外光源,透過光轉電的方式,藉由光電流驅動發光二極體使其發出可見光,達到短波長轉換的效果。而升頻感測器無非需要良好的響應度及發光效率,才能達到有效的轉換效率,升頻感測器我們採用銦凸塊將兩者元件進行點對點結合。
光檢測器的部分,為了達到較高的響應度及較好的元件特性我們採用平面型P-I-N的結構,其中吸收層以截止波長為1.7 nm的In0.53Ga0.47As作為材料而覆蓋層及基板則是採用與其晶格匹配的InP作為材料。
在製程中,我們選用Si3N4作為擴散阻擋層,再透過RIE進行蝕刻定義擴散窗,P型則是採用快速熱擴散技術,將N摻雜之InP覆蓋層利用鋅原子擴散使之成為P型InP覆蓋層進而形成P-I-N結構之光檢測器。
發光二極體的部分,我們製作了綠光、藍光的發光二極體,為了達到良好的發光效率,我們皆採用蝕刻出磊晶層高原並將電子電洞侷限在量子井。為了有良好的歐姆接觸,我們在P型區域上成長ITO透明導電薄膜層,使電流能夠均勻的分佈並通過量子井。
藉由銦凸塊(In Bump)以n-p-p-n 串聯結構(前面的n-p 為MicroLED,後面的p-n 為MicroPD)的晶圓級覆晶完成鍵合,這樣的元件稱為升頻元件。當我們在MicroLED 的n 邊施加偏壓的負極,在MicroPD 的n 邊施加偏壓的正極,如此MicroLED 的偏壓方式為可以發光的順偏,MicroPD 的偏壓方式為可以吸光的逆偏。當外界的紅外光入射至MicroPD 的n 邊,在MicroPD 內部產生光電流,由於MicroPD 與MicroLED 為串聯方式,光電流將由MicroLED 的p 邊流入n 邊而使MicroLED 發光;亦即升頻元件可以將入射的紅外光轉為LED 所發出的可見光。
進行點對點的結合,需要克服元件水平度、潔淨度的問題,在高溫下基板膨脹係數的不同,也會導致像數間距些微的改變,而無法成功實現結合,我們使用FC150機台製作升頻感測元件的接合,我們採用溫度145度C,持溫170秒,施力10Kg,去進行元件接合。
此升頻感測元件,由P-I-N結構之二極體當作接收端,分別結合兩種不同波長之發光二極體,再以1550nm之近紅外光元入射元件後發出藍光以及綠光。此升頻元件可操作在3.2V以及3.5V,最高轉換效率為0.152W/W。
In our research, the up converter’s pixel size is 10 µm and the pixel pitch is 20 µm. Through the infrared(IR) photo detector to absorb the IR light and turn the IR light into the electrons for LED to emit the visible light. This transformation can make the long-wavelength light turn into the short-wavelength light. As a result, the perfect UPC components need high responsivity for PD and well light efficiency for LED. The UPC uses indium to connect PD and LED. For the PD side, we take the planar P-I-N structure to get the high responsivity, the absorb layer , In0.53Ga0.47As can absorb the IR light which cut-off wavelength is 1.7µm.

In the process, we use silicon nitride as the diffusion barrier, and then use RIE to define the diffusion window. About P-type doping region, we use RTD technique to diffuse zinc atoms into N- InP cap layer. The P-type indium phosphide overlay further forms a photodetector of the P-I-N structure.
In the part of the light-emitting diode, we have produced green and blue light-emitting diodes. In order to achieve good luminous efficiency, we have etch the epitaxial layer plateau and limited the electron-hole pair to the quantum well. In order to have reliable ohmic contact, we grow a layer of indium tin oxide transparent conductive film on the P-type region, so that the current can be evenly distributed and passing through the quantum well.
To carry out point-to-point integration, it is necessary to overcome the problem of component lev-elness and cleanliness. The difference in substrate expansion coefficient at high temperatures also causes slight changes in the image-to-number spacing, and cannot be satisfactorily combined. This up-converting sensing component by use FC 150 . We use heating temperature of 145 °C for 170 seconds and force of 10 kg.
Bonding is accomplished by in bump with wafer-level flip-chips in an n-p-p-n series structure (the front n-p is a MicroLED and the latter p-n is a MicroPD). Such an element is called an up-converting element.We apply a biased negative electrode to the n-side of the MicroLED, and apply a biased positive electrode to the n-side of the MicroPD. Thus, the biasing mode of the MicroLED is an illuminating forward bias, and the biasing mode of the MicroPD is a reverse bias that absorbs light.When external infrared light is incident on the n side of the MicroPD, a photocurrent is gener-ated inside the MicroPD. Since the MicroPD and the MicroLED are connected in series, the photo-current will flow from the p side of the MicroLED to the n side to make the MicroLED emit light; that is, the up converter element can be incident. The infrared light is converted into visible light emitted by the LED.
The up-converter sensing combines two different wavelengths of light-emitting diodes by the diodes of the P-I-N structure at the receiving end, and emits blue light and green light after entering the element with the near-infrared light element of 1550 nm. This up-converter operates at 3.2V and 3.5V with a maximum conversion efficiency of 0.152W/W.
摘要 1
Abstract 3
誌謝 5
Contents 6
List of Figures 8
Chapter 1. Introduction 10
Chapter 2. The Basic Theory 14
2-1 The Basic Theory of InGaAs Double-Heterojunction P-I-N Photodetector 15
2-2-1 InGaAs Photodiodes material 16
2-2-2 Junction Capacitance 16
2-2-3 Dark Current Mechanism 18
2-2-4 Responsivity and Quantum Efficiency 19
2-3 The Basic Theory of Light Emitting Diode 20
2-3-1 The I-V Characteristic of LED 21
2-3-2 The Optical Characteristic of LED 23
2-4 Characterization instruments 24
2-4-1 I-V Characteristic Measurement System 24
2-4-2 Optical Characteristic Measurement System 24
2-4-3 Responsivity Spectrum Measurement System 24
Chapter 3. Experimental Procedure 31
3-1 Epitaxial Structure Design 31
3-2 Concepts of Mask Design 32
3-3 Rapid Thermal Diffusion Process 33
3-4 Fabrication Process of up-converter 34
3-4-1 Fabrication Process of up-converter—PD 34
3-4-2 Fabrication Process of up-converter—LED 39
3-4-3 Fabrication Process of up-converter—Bonding 48
3-4-3-1 Bonding way 48
3-4-3-2 FC150 machine operation 49
3-4-3-3 Under bump metalization 50
3-4-3-4 Indium bump 50
3-4-3-5 Actual operation 51
Chapter 4. Results and Disscussion 58
4-1 Basic component characteristics 58
4-1-1 InGaAs PD array 58
4-1-2 GaN LED array 62
4-1-3 Up converter array 68
4-2Different path of the UPC devices after bonding analysis. 71
4-3 Up converter combine solar cell with led 75
4-3-1 Solar cell 75
Chapter 5. Conclusions 79
Reference 80

[1] Y. Yang, Y. H. Zhang, W. Z. Shen and H. C. Liu, “Semiconductor infrared up-conversion de-vices,” Progress in Quantum Electronics, 35, 77-108, 2011.
[2] Luo, H., et al. "Pixelless imaging device using optical up-converter." IEEE Electron Device Let-ters 25.3 (2004): 129-131.
[3] A. Brillant, “Digital and analog fiber optic communications for CATV and FTTx Applications,” SPIE Press, Washington, Chap. 8, 2008.
[4] V. Swaminathan and A. T. Macrander, “Materials Aspects of GaAs and InP Based Structures,” Prentice Hall, Chap. 1, 1991
[5] R.W.M. Hoogeveen, R.J. van der A, A.P.H. Goede, “Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth at-mosphere,” Infrared Phys. Tech., vol. 42, no. 1, pp. 1–16, 2001.
[6] Donald A. Neaman, “Semiconductor Physics And Device,” 3rd ed, McGraw-Hill, New York, Chap. 7-8, 2003.
[7] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” John Wiley & Sons, New York, Chap. 13, 2007.
[8] E.F. Schubert, Light-Emitting Diodes, 2nd ed. Cambridge U.K.: Cambridge Univ. Press, 2006.
[9] Liu, H. C., et al. "QWIP-LED pixelless thermal imaging device." Intersubband Infrared Photo-detectors. 2003. 299-313.
[10] Ban, Dayan, et al. "Pixelless 1.5-/spl mu/m up-conversion imaging device fabricated by wafer fusion." IEEE photonics technology letters 17.7 (2005): 1477-1479.
[11] Luo, H., et al. "Optical upconverter with integrated heterojunction phototransistor and light-emitting diode." Applied physics letters88.7 (2006): 073501.
[12] Liu, Hui Chun. "Pixelless infrared-imaging device concept." Photodetectors: Materials and De-vices II. Vol. 2999. International Society for Optics and Photonics, 1997.
[13] Yun-Ji, Wang, et al. "Performance of InGaAs detector with SiN diffusion mask." JOURNAL OF INFRARED AND MILLIMETER WAVES 33.4 (2014): 333-336.
[14] Huang, Chi-Chen, Chong-Long Ho, and Meng-Chyi Wu. "Large-Area Planar Wavelength-Extended InGaAs pin Photodiodes Using Rapid Thermal Diffusion With Spin-On Dopant Technique." IEEE Electron Device Letters 36.8 (2015): 820-822.
[15] Huang, Chi-Chen, et al. "Large-area planar InGaAs pin photodiodes with Mg driven-in by rap-id thermal diffusion." IEEE Electron Device Letters 35.12 (2014): 1278.
[16] Y. Yang, Y. H. Zhang, W. Z. Shen and H. C. Liu, “Semiconductor infrared up-conversion de-vices,” Progress in Quantum Electronics, 35, 77-108, 2011.
[17] S. Feng, J. Hu, Y. Lu, B. V. Yakshinskiy, J. D. Wynn, and C. Ghoshet, “Comparative studies of p-type InP layers formed by Zn3As2 and Zn3P2 diffusion,” J. Electron. Mater., vol. 32, pp. 932–934, 2003.
[18] O. J. Pitts, W. Benyon, D. Goodchild, and A. J. SpringThorpe, “Multiwafer zinc diffusion in an MOVPE reactor,” J. Cryst. Growth, vol. 352, no. 1, pp. 249–252, 2012.
[19] Islam, Mohammad, et al. "InGaAs/InP PIN photodetector arrays made by MOCVD based zinc diffusion processes." Infrared Technology and Applications XLII. Vol. 9819. International So-ciety for Optics and Photonics, 2016.
[20] M. R. Ravi, A. DasGupta, and N. DasGupta, “Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment,” J. Cryst. Growth, vol. 268, pp. 359–363, 2004.
[21] Nagi, Richie, et al. "Development of high performance SWIR InGaAs focal plane array." Image Sensing Technologies: Materials, Devices, Systems, and Applications II. Vol. 9481. International Society for Optics and Photonics, 2015.
[22] Ben G. Streetman and Sanjay Kumar Banerjee, “Solid State Electronic Devices,” 6th ed, Pren-tice Hall, New York, Chap. 8, 2007.
[23] Donald A. Neaman, “Semiconductor Physics And Device,” 3rd ed, McGraw-Hill, New York, Chap. 7-8, 2003.
[24] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” John Wiley & Sons, New York, Chap. 13, 2007.
[25] Xu Lin Nguyen, Thi Ngoc Nhien Nguyen, Vinh Thang Chau and Mau Chien Dan,” The fabri-cation of GaN-based light emitting diodes (LEDs),” Adv. Nat. Sci.: Nanosci. Nanotechnol. vol. 1, no. 2, pp. 5, Aug3, 2010.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *