帳號:guest(18.220.181.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃聖祐
作者(外文):Huang, Sheng-You
論文名稱(中文):主動式960×540與1920×1080紫外光微型發光二極體陣列之優化與應用
論文名稱(外文):Optimization and Applications of Addressable 960×540 and 1920×1080 UV Micro-LED Arrays
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):吳忠幟
李世昌
羅俊傑
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063507
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:101
中文關鍵詞:微型發光二極體顯示器氮化鎵紫外光陣列
外文關鍵詞:micro-LEDDisplayGaNultravioletarray
相關次數:
  • 推薦推薦:0
  • 點閱點閱:129
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要以優化微型發光二極體特性及製作微型發光二極體陣列為未來目標,以氮化鎵為材料,製作微型發光二極體陣列並設計出優化特性之結構。主要發光波段為紫外光370nm,並以960×540微型發光二極體陣列製作及驗證優化特性之結構,接著利用自動對準技術和和游標尺應用分別製作兩種不同結構的1920×1080微型發光二極體陣列。
在960×540微型發光二極體陣列方面,首先在氮化鎵磊晶片上鍍上銦錫氧化物(ITO)的透明導電層作為p型電極,接著蝕刻出正梯型MESA(高原),鍍上金屬做為n型電極,並且沉積絕緣層。此外再鍍上鋁做為增強光特性的反射層,最後再沉積第二層絕緣層。而在第一種1920×1080微型發光二極體陣列方面,則是以蝕刻出倒梯型的MESA(高原)為技術關鍵,使其結構可利用自動對準技術,進而製作出1920×1080微型發光二極體。第二種1920×1080微型發光二極體陣列方面,我們在光罩上設計了由標尺增加對準的精度,進而製作出可以獨立鍍上n型電極的1920×1080微型發光二極體。
在本論文中,960×540的微型光二極體陣列為10微米大小的像素,像素距離為16微米;1920×1080的微型發光二極體陣列,為5微米大小的像素,像素距離為8微米。此陣列比例為使用現今社會常用的螢幕及投影片尺寸,即16:9的顯示比例。
在960×540 370 nm 微型發光二極體陣列方面,光特性在1 mA的電流注入下,光輸出功率為149.5μW,最好的外部量子效率為5.39%。而在側壁鍍上鋁的光特性,光輸出功率為179.2μW,最好的外部量子效率分別為6.46%。我們成功的利用鋁對於紫外光的高反射率製作出可增加光強度,改善光特性的960×540微型發光二極體陣列。
而在1920×1080微型發光二極體陣列方面,我們用ICP蝕刻,而達到高原呈現倒梯型,進而製作出1920×1080微型發光二極體陣列。在370 nm發光波段的元件特性當中,10伏特的逆偏電壓下,漏電流為58.2pA,順向電壓為3.24伏特的正偏壓,在1 mA的電流注入下,光輸出功率為45.7μW,最好的外部量子效率為1.98%。而在另一種1920×1080微型發光二極體陣列方面,10伏特的逆偏電壓下,漏電流為8.63pA,導通電壓為3.26伏特的正偏壓,在1mA的電流注入下,光輸出功率為68.8μW,最好的外部量子效率為3.29 %。
In this thesis, our goal is to optimize the characteristic of micro-LED and fabricate the micro-LED arrays. The wavelength of our UV-LED is 370nm. We fabricate and improve the characteristics in our 960×540 micro-LED arrays. Also, we use self-aligned technology and vernier to fabricate two types of 1920×1080 micro-LED arrays, respectively.
In 960×540 micro-LED arrays, we form the mesas by ICP etching first. After depositing n-metal, we deposit a dielectric layer. Then, deposit aluminum reflective layer at the sidewall to improve the light characteristics. Finally, we deposit the dielectric layer, and etch a hole by RIE for measurement. In the first type of 1920×1080 micro-LED arrays, the inverted trapezoid shape is the key to self-aligned technology. By ICP etching, we form inverted trapezoid mesa, and fabricate 1920×1080 micro-LED array. In the second type of 1920×1080 micro-LED arrays, we apply the vernier in our mask to enhance the accuracy of alignment, then fabricate the arrays which can be deposited the n-metal independently.
In this thesis, the wavelength of our UV LED is 370nm. For 960×540 micro-LED array, the pixel size is 10μm, the pixel pitch is 16μm. For 1920×1080 micro-LED array, the pixel size is 5μm, the pixel pitch is 8μm. The ratio for our array is 16:9, which is the mainstream for screens all around the world.
For a single pixel characteristic of 960×540 370 nm micro-LED arrays, the light output power is 149.5μW and the maximum external quantum efficiency is 5.39%. After we deposit the reflective layer at the sidewall, the light output power is 179.5μW and the maximum external quantum efficiency is 6.46%. We verify that the aluminum reflective layer is useful for UV micro-LED, and use it to improve the light out power and EQE in our 960×540 UV 370 nm micro-LED arrays.
For the first type of 1920×1080 370 nm micro-LED arrays with self-aligned process, the key to the self-aligned technology is ICP etching of the inverted trapezoid mesa. For a single pixel characteristic of this arrays, the leakage current at -10 volts is 58.2pA and forward voltage is 3.24V. At 1 mA, the light output power is 45.7μW and the maximum external quantum efficiency is 1.98%. For the second type of 1920×1080 370 nm micro-LED arrays, the leakage current at -10 volts is 8.63pA and forward voltage is 3.26V. At 1 mA, the light output power is 68.8μW and the maximum external quantum efficiency is 3.29%.
Contents
摘要 i
Abstract iii
致謝 v
Contents vi
List of Figures x
Chapter 1 Introduction 1
1-1 Development of Light-Emitting Diodes 1
1-2 Application of Lighting-Emitting Diodes 2
1-3 Study Motivation 6
Chapter 2 The Basic Theory 7
2-1 Principle of Light Emitting Diode 7
2-2 Characteristic of Current versus Voltage 10
2-3 Characteristic of Light-output Power versus Current 13
2-4 Characteristic of Electroluminescence 15
Chapter 3 Experimental Procedure 19
3-1 Idea of Micro-LED Arrays Design 19
3-1-2 Size-dependent of Micro-LED 20
3-1-3 Device Structure of 960x540 Micro-LED Arrays 20
3-1-4 Device Structure of 1920x1080 Micro-LED Arrays 21
3-2 Process Steps and Experimental Details 22
3-2-1 Process of 960x540 Micro-LED Arrays 22
3-2-2 Process of 960x540 Sidewall Confinement Micro-LED Arrays 29
3-2-3 Process of 1920x1080 Micro-LED Arrays with Self-alignment Process 33
3-2-4 Process of 1920x1080 Micro-LED Arrays 37
3-3 Methods and Equipment for Measurement 42
3-3-1 Transmission Line Measurement 42
3-3-2 I-V Measurement System 44
3-3-3 L-I-V and E-L Measurement System 45
Chapter 4 Result and Discussion 47
4-1 ITO Film and N-metal Contact Resistance 47
4-2 Micro-LED with different sizes 50
4-2-1 I-V Characteristic and Analysis 50
4-2-2 L-I-V Characteristic and Analysis 53
4-3 The 960x540 UV 370nm Micro-LED Arrays 56
4-3-1 I-V Characteristic and Analysis 56
4-3-2 L-I-V Characteristic and Analysis 58
4-4 The 960x540 UV 370nm Sidewall Confinement Micro-LED Arrays 60
4-4-1 I-V Characteristic and Analysis 61
4-4-2 L-I-V Characteristic and Analysis 63
4-4-3 E-L Characteristic and Analysis 65
4-5 Comparison 66
4-6 The 1920x1080 UV 370nm Micro-LED Arrays with Self-alignment Process 70
4-6-1 I-V Characteristic and Analysis 70
4-6-2 L-I-V Characteristic and Analysis 72
4-7 The 1920x1080 UV 370nm Micro-LED Arrays 74
4-7-1 I-V Characteristic and Analysis 74
4-7-2 L-I-V Characteristic and Analysis 76
4-7-3 E-L Characteristic and Analysis 78
4-8 Comparison 79
Chapter 5 Flip-chip bonding 84
5-1 Process of submount demonstration 84
5-2 Demonstration of flip-chip bonding with submount 88
5-3 Process of IC backplane and demonstration 89
5-4 Demonstration of flip-chip bonding with IC backplane 94
Chapter 6 Conclusions 98
Reference 100

[1] 賴福興. "對應紅色供應鏈強勢崛起可行策略分析—以台灣 LED 上游產業晶電為例." 清華大學高階主管經營管理碩士在職專班學位論文 (2016): 1-71. P.8-15
[2]http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/IPNC_160907_0702.htm
[3]https://www.ledsmagazine.com/articles/print/volume-9/issue-9/features/led-lighting-market-holds-steady-in-2012-magazine.html
[4] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers. Semicond. Sci. Technol., 26. (2010)
[5] François. Templier. Journal of the Society for Information Display, 24. (2016)
[6] Zhao Jun Liu, et al. Journal of Display Technology ,9.8. (2013)
[7] http://technews.tw/2016/09/22/micro-led-ledinside-forum-2016/
[8] Samuel K. Moore, IEEE Spectrum,55. ( 2018 )
[9] Z. Y. Fan, J. Y. Lin, and H. X. Jiang. Journal of Physics D: Applied Physics,41.9. (2008)
[10] Murat Kaya Yapici, and Ilyas Farhat. SPIE Advanced Lithography. International Society for Optics and Photonics. (2014)
[11] Umesh Mishra and Jasprit Singh, Semiconductor Device Physics and Design,180. (2007)
[12] J. Piprek, Phys. Status Solidi A 207, 2217. (2010).
[13] Joachim Piprek. physica status solidi, 207.10. (2010)
[14] Jaehee Cho E. Fred Schubert Jong Kyu Kim.Laser Photonics Rev. 7. (2013)
[15] E. Fred Schubert,” Light-Emitting Diodes (2006)”. E. Fred Schubert, 2006. Chapter4
[16]https://www.deviantart.com/cyangmou/art/Pixel-Gameart-101-06-Pixelart-Screen-Resolution-688071910
[17] David H. Cushing. Enhanced Optical Filter Design, 55. (2010)
[18] Rongfu Qiu, Hai Lu, Dunjun Chen, Rong Zhang, Youdou Zheng. Applied Surface Science, 257. (2011)
[19] Wu Shuai. Design. Appl. Sci. Diss. 10. (2004)
[20] Joerg Heber. Nature Physics, 791. (2014)
[21] https://en.wikipedia.org/wiki/Light-emitting_diode
[22] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys. 78. (2001)
[23] Jonathan J. D. McKendry. Appl. Phys. Lett, 86. (2005)
[24] Akio Watanabe, Fumitaro Ishikawa and Masahiko Kondow. Jpn. J. Appl. Phys.51. (2012)
[25] Shengjun Zhou, Bin Cao and Sheng Liu. Appl Phys A, 105.(2011)
[26] James R. Bonar, et al. Proc. SPIE, 9768. (2016)
[27] David Massoubre, et al. IEEE photonics technology letters. (2012).
[28] C. W. Jeon, E. Gu, and M. D. Dawson .Appl. Phys. Lett. 86.(2005)
[29] Shuai Wu, Sameer Chhajed, Li Yan, Wenhong Sun, Maxim Shatalov, Vinod Adivarahan and M. Asif Khan, Jpn. J. Appl. Phys, 45. (2006)
[30] Ke Zhang, Deng Peng, Kei May Lau, Zhaojun Liu. Journal of the Society for Information Display. (2017) 
[31] Chan-Wook Jeon, et al. IEEE photonics technology letters,16. (2004)
[32] Z.Gong, et al. IEEE Transactions on Electron Devices, 54.10 (2007)
[33] Z. J. Liu, W. C. Chong, K. M. Wong and K. M. Lau. Journal of Display Technology, 9. (2013)
[34] C.W. Jeon, H.W. Choi, and M.D. Dawson. IEEE Lasers and Electro-Optics Society, 27. (2003)
[35] Jonathan J. D. McKendry et al. IEEE Photonics Technology Letters ,Volume, 21. (2009)
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *