帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張廷瑋
作者(外文):Chang, Ting-Wei
論文名稱(中文):應用於非揮發性記憶體具增益增強回授架構之小偏移電壓感測放大器
論文名稱(外文):A Small Offset with Gain Enhanced Feedback Scheme Voltage-type Sense Amplifier for Non-volatile Memories
指導教授(中文):張孟凡
指導教授(外文):Chang, Meng-Fan
口試委員(中文):邱瀝毅
洪浩喬
謝志成
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063505
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:60
中文關鍵詞:應用於非揮發性記憶體具增益增強回授架構之小偏移電壓感測放大器電阻式記憶體張廷瑋
外文關鍵詞:A Small Offset with Gain Enhanced Feedback Scheme Voltage-type Sense Amplifier for Non-volatile MemoriesRRAMTing-Wei Chang
相關次數:
  • 推薦推薦:0
  • 點閱點閱:451
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著物聯網(IOT)時代的來臨,應用於低成本、低耗能、高速與高容量的非揮發性記憶體之產品迅速增加及日益擴展,其中,快閃記憶體(NAND Flash)因具有低成本以及高容量之特性,所以成為當今主流的非揮發記憶體,但由於快閃記憶體(NAND Flash)具有較低壽命、高寫入電壓及當製成微縮時生產之瓶頸,且操作時速度相對偏慢,因為必須開發下世代之非揮發記憶體。
在下世代的非揮發性記憶體當中(例如:ReRAM、STT-MRAM…等)非常適合用於穿戴式裝置中,其中,由於電阻式記憶體(ReRAM)具有快速讀取和低供給電壓之特性,此外,其低寫入功耗、小面積、以及具有邏輯製成相容性,可降低製作成本。所以非常適合應用於內嵌式裝置。隨著製成微縮,電阻式記憶體(ReRAM)之阻值的漂移量也隨之增加,造成高阻態(HRS)及低阻態(LRS)之比值(R-ratio)縮小。
在本碩士論文中將探討電阻式記憶體(ReRAM)在存取上會面臨之挑戰,並提出一電壓感測放大器電路解決以下問題,以提升讀取效能:
1. 隨著製成微縮,使得R-ratio變小,導致讀取時之感測裕度(sensing margin)變小。
2. 隨著製成微縮,使得R-ratio變小,導致需要更長之讀取時間。
3. 由於讀取電壓過高時,將造成讀取干擾(Read disturb)問題。但傳統電壓感測放大器操作於低電壓讀取時良率下降。
因此,在此篇論文中提出應用於非揮發性記憶體具增益增強回授架構之小偏移電壓感測放大器(SOGEF-VSA)。我們提出的SOGEF-VSA可容忍3倍以下之讀取電壓及與傳統電壓感測放大器相比可容忍之小偏移電壓量提升8倍,在正常操作電壓1V以及不同位元線(Bitline)長度時,可以減少2~2.83倍之讀取速度,且可增加15.74倍感測裕度與降低位元線(Bitline)對讀取速度的影響。
我們採用台積電55奈米製程之電阻式記憶體來實作我們提出的架構。在正常操作電壓為1V下,且可以正常操作於讀取電壓為100mV時,另外,量測提出之電路讀取速度為1 ns。
In recent years, with the coming of the Internet of things (IOT) era. Applied to low cost, low energy, high speed and high capacity of non-volatile memory products increased rapidly, and increasingly expanded. Among them, NAND Flash memory has become the mainstream non-volatile memory due to its low cost and high capacity. However, NAND Flash memory has low lifetime, high write voltage, production bottleneck when it faces difficulties of scaling down to nanometer scale, and the operation speed is relatively slow. Therefore, the next generation of nonvolatile memory must be developed.
In the next generation of non-volatile memory (e.g., ReRAM, stt-mram...) ReRAM is very suitable for portable devices. Since ReRAM has the characteristics of fast read time and low supply voltage, as well as low write power consumption, small area and logic compatibility, it can reduce production cost. So it is very suitable for embedded devices. As the scaling down to nanometer scale, the ReRAM drift increases and the R-ratio decreases.
In this master's thesis, the challenges of using the ReRAM will be explored, and a voltage-sensing amplifier circuit will be proposed to solve the following problems to improve reading efficiency:
1. As the scaling down to nanometer scale, the R-ratio becomes smaller, resulting in smaller sensing margin in read mode.
2. As the scaling down to nanometer scale, the R-ratio decreases, which leads to a longer read time.
3. It may cause Read disturb due to the high Read voltage. But that yield of the conventional voltage sense amplifier is decrease when operating at the low Read voltage.
Therefore, A Small Offset Sense Amplifier with Gain Enhanced Feedback Scheme for Non-volatile Memories is proposed in this paper.
Our proposed SOGE-VSA can tolerate a read voltage of less than 3 times and a small offset voltage of 8 times higher than that of traditional voltage-sensing amplifiers. When the normal operating voltage is 1V and Bitline length is different, the read speed can be reduced by 2-2.83 times, and the sensing margin can be increased by 15.74 times. The influence of Bitline on the read speed can be reduced.
摘要-i
Abstract-iii
致謝-v
Contents-vi
List of Figures-viii
List of Tables-x
Chapter 1 Introduction-1
1.1 The Role of Memory in SoC products-1
1.2 Memory Landscape-2
1.3 Challenges of Flash Memory-5
1.4 Emerging Non-Volatile Memories-7
Chapter 2 Characteristic of Contact-RRAM-12
2.1 Structure of Contact-RRAM-12
2.2 Switching Mechanism-14
2.3 Write operation-14
2.4 Read operation-16
2.5 Distribution of CRRAM-17
Chapter 3 Design Challenges of Small Offset & High Speed-19
3.1 Structure and Operations of Conventional Sensing Amplifier Schemes-19
3.2 Design Challenges-21
3.2.1 Threshold Voltage in Process-21
3.2.2 Issues of CRRAM-22
3.3 Previous Arts-23
Chapter 4 Proposed Sensing Schemes and Analysis-30
4.1 Proposed Sense Amplifier-30
4.1.1 Motivation and Concept of Proposed Sense Amplifier-30
4.1.2 Structure of Proposed Sense Amplifier-32
4.1.3 Operations of Proposed SOGEF-VSA-33
4.2 Analysis and Comparison-36
4.2.1 Efficiency of Margin Enhancement-36
4.2.2 Tolerance of low R-ratio and Read Voltage-37
4.2.3 Access time (TAC) Improvement-39
4.2.4 Read Energy Consumption Reduction-40
4.2.5 Capacitor Analysis-41
4.2.6 Yield Analysis-42
Chapter 5 Measurement Results and Conclusion-43
5.1 CRRAM Macro-43
5.2 Design for Test-chip-45
5.3 Measurement results-47
5.4 Conclusions and Future Work-51
Reference-54

Kiyoo Itoh, Takayasu Sakurai, “VLSI Memory Chip Design”, Springer-Verlag, NY, pp. 1-46, 2001.
M. Bohr, "The new era of scaling in an SoC world," 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2009, pp. 23-28.
F. Menichelli and M. Olivieri, "Static Minimization of Total Energy Consumption in Memory Subsystem for Scratchpad-Based Systems-on-Chips," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 2, pp. 161-171, Feb. 2009.
D. Smith, J. Zeiter, T. Bowman, J. Rahm, B. Kertis, A. Hall, S. Natan, L. Sanderson, R. Tromp, J. Tsang, “A 3.6ns 1Kb ECL I/O BiCMOS U.V. EPROM,” IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1987-1990, May 1990.
C. Kuo et al., "A 512-kb flash EEPROM embedded in a 32-b microcontroller," in IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 574-582, Apr 1992.
S. H. Kulkarni, Z. Chen, J. He, L. Jiang, M. B. Pedersen and K. Zhang, "A 4 kb Metal-Fuse OTP-ROM Macro Featuring a 2 V Programmable 1.37 μm^21T1R Bit Cell in 32 nm High-k Metal-Gate CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 863-868, April 2010.
Y. H. Tsai et al., "45nm Gateless Anti-Fuse Cell with CMOS Fully Compatible Process," 2007 IEEE International Electron Devices Meeting, Washington, DC, 2007, pp. 95-98.
Webfeet Inc., “Semiconductor industry outlook,” Non-Volatile Memory Conference, Santa Clara, CA., 2002
Sang Lyul Min and Eyee Hyun Nam, "Current trends in flash memory technology," Asia and South Pacific Conference on Design Automation, 2006., Yokohama, 2006
F. Masuoka, M. Momodomi, Y. Iwata and R. Shirota, "New ultra high density EPROM and flash EEPROM with NAND structure cell," 1987 International Electron Devices Meeting, 1987, pp. 552-555.
A. Bergemont, H. Haggag, L. Anderson, E. Shacham and G. Wolstenholme, "NOR virtual ground (NVG)-a new scaling concept for very high density flash EEPROM and its implementation in a 0.5 um process," Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 1993, pp. 15-18.
R. F. Freitas and W. W. Wilcke, “Storage-class memory: The next storage system
technology,” IBM Journal of Research and Development, vol. 52, no. 4-5, pp. 439-447,July 2008.
R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, "Introduction to Flash Memory," Proceeding of the IEEE, vol. 91, Issue 4, pp. 489-502, April 2003.
Y. Koh, “NAND Flash Scaling beyond 20nm,” IEEE Internstional Memory Workshop, pp. 1-3, May 2009.
K. Prall, “Scaling Non-Volatile Memory Below 30nm,” IEEE Non-Volatile Semiconductor Memory Workshop, pp. 5-10, Aug. 2007.
S. Lee, "Scaling Challenges in NAND Flash Device toward 10nm Technology," IEEE International Memory Workshop, pp. 1-4, May 2012.
C. Villa et al., "A 125 MHz burst-mode flexible read-while-write 256 Mbit 2b/c 1.8V NOR flash memory," ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., San Francisco, CA, 2005, pp. 52-584 Vol. 1.
C. Deml, M. Jankowski and C. Thalmaier, "A 0.13μm 2.125MB 23.5ns Embedded Flash with 2GB/s Read Throughput for Automotive Microcontrollers," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 478-617.
M. Sako et al., "7.1 A low-power 64Gb MLC NAND-flash memory in 15nm CMOS technology," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
C. H. Hung et al., "Layer-Aware Program-and-Read Schemes for 3D Stackable Vertical-Gate BE-SONOS NAND Flash Against Cross-Layer Process Variations," in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1491-1501, June 2015.
D. Kang et al., "256Gb 3b/cell V-NAND flash memory with 48 stacked WL layers," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 130-131, Feb. 2016.
H. Noguchi et al., "7.5 A 3.3ns-access-time 71.2μW/MHz 1Mb embedded STT-MRAM using physically eliminated read-disturb scheme and normally-off memory architecture," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
H. Noguchi et al., "4Mb STT-MRAM-based cache with memory-access-aware power optimization and write-verify-write / read-modify-write scheme," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 132-133, Feb. 2016.
Y. Choi, et al., “A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 46-48, 2012.
D. Takashima, Y. Nagadomi and T. Ozaki, "A 100MHz Ladder FeRAM Design with Capacitance-Coupled-Bitline (CCB) Cell," IEEE Symposium on VLSI Circuits Digest of Technical Papers, pp. 227-228, June 2010.
W. Otsuka et al., "A 4Mb conductive-bridge resistive memory with 2.3GB/s read-throughput and 216MB/s program-throughput," 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 210-211.
K. Aratani et al., "A Novel Resistance Memory with High Scalability and Nanosecond Switching," 2007 IEEE International Electron Devices Meeting, Washington, DC, 2007, pp. 783-786.
K. Rho et al., "23.5 A 4Gb LPDDR2 STT-MRAM with compact 9F2 1T1MTJ cell and hierarchical bitline architecture," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 396-397
J. C. S. Kools, "Exchange-biased spin-valves for magnetic storage," in IEEE Transactions on Magnetics, vol. 32, no. 4, pp. 3165-3184, Jul 1996.
S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi and M. DeHerren, "Progress and outlook for MRAM technology," in IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 2814-2819, Sep 1999.
S. Tehrani et al., "Recent developments in magnetic tunnel junction MRAM," in IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 2752-2757, Sep 2000.
K. C. Chun, H. Zhao, J. D. Harms, T. H. Kim, J. P. Wang and C. H. Kim, "A Scaling Roadmap and Performance Evaluation of In-Plane and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory," in IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 598-610, Feb. 2013.
Alexander Driskill-Smith, "New Samsung Open Innovation Program For STT-MRAM Technology - An Interview With Alexander Driskill-Smith" AZO Materials Sep, 2013
M. Hosomi et al., "A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., Washington, DC, 2005, pp. 459-462.
S. W. Chung et al., "4Gbit density STT-MRAM using perpendicular MTJ realized with compact cell structure," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 27.1.1-27.1.4.
C. Park et al., "Systematic optimization of 1 Gbit perpendicular magnetic tunnel junction arrays for 28 nm embedded STT-MRAM and beyond," 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp. 26.2.1-26.2.4.
H. Noguchi et al., "Novel voltage controlled MRAM (VCM) with fast read/write circuits for ultra large last level cache," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 27.5.1-27.5.4.
Y. J. Song et al., "Highly functional and reliable 8Mb STT-MRAM embedded in 28nm logic," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 27.2.1-27.2.4.
J. M. Slaughter et al., "Technology for reliable spin-torque MRAM products," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 21.5.1-21.5.4.
S. Song et al., "CMOS device scaling beyond 100 nm," International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), San Francisco, CA, USA, 2000, pp. 235-238.
Jean-Pierre Colinge, Cynthia A. Colinge, “Physics of Semiconductior Devices.” Springer-Verlag, NY, pp. 175-182, 2002.
E. Morifuji et al., "A 1.5 V high performance mixed signal integration with indium channel for 130 nm technology node," International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), San Francisco, CA, USA, 2000, pp. 459-462.
C. H. Shih, Y. M. Chen and C. Lien, "Effect of insulated shallow extension for the improved short-channel effect of sub-100 nm MOSFET," International Semiconductor Device Research Symposium, pp. 158-159, Dec. 2003.
S. Severi et al., "Diffusion-less junctions and super halo profiles for PMOS transistors formed by SPER and FUSI gate in 45 nm physical gate length devices," IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., 2004, pp. 99-102.
M. F. Chang et al., "An offset-tolerant current-sampling-based sense amplifier for Sub-100nA-cell-current nonvolatile memory," 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 206-208.
M. Jefremow et al., "Time-differential sense amplifier for sub-80mV bitline voltage embedded STT-MRAM in 40nm CMOS," 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 216-217.
N. Verma and A. P. Chandrakasan, "A High-Density 45nm SRAM Using Small-Signal Non-Strobed Regenerative Sensing," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 380-621.
C. C. Lin et al., "7.4 A 256b-wordlength ReRAM-based TCAM with 1ns search-time and 14x improvement in word length-energy efficiency-density product using 2.5T1R cell," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 136-137.
M. F. Chang et al., "19.4 embedded 1Mb ReRAM in 28nm CMOS with 0.27-to-1V read using swing-sample-and-couple sense amplifier and self-boost-write-termination scheme," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 332-333.
B. Giridhar, N. Pinckney, D. Sylvester and D. Blaauw, "13.7 A reconfigurable sense amplifier with auto-zero calibration and pre-amplification in 28nm CMOS," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 242-243.
Q. Dong, et al., “A 1Mb embedded NOR flash memory with 39µW program power for mm-scale high-temperature sensor nodes,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 198-199, 2017.
T. Yang, K. Li, Y. Chiang, W. Lin, H. Lin and M. Chang, "A 28nm 32Kb embedded 2T2MTJ STT-MRAM macro with 1.3ns read-access time for fast and reliable read applications," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 482-484.
W. Khwa et al., "A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN edge processors," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 496-498.
C. Lee, H. Lin, C. Lien, Y. Chih and J. Chang, "A 1.4Mb 40-nm embedded ReRAM macro with 0.07um2 bit cell, 2.7mA/100MHz low-power read and hybrid write verify for high endurance application," 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC), Seoul, 2017, pp. 9-12.
L. Zhang, X. Fong, C. Chang, Z. H. Kong and K. Roy, "Highly Reliable Spin-Transfer Torque Magnetic RAM-Based Physical Unclonable Function With Multi-Response-Bits Per Cell," in IEEE Transactions on Information Forensics and Security, vol. 10, no. 8, pp. 1630-1642, Aug. 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *