帳號:guest(18.191.130.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):金利鋒
作者(外文):Chin, Li-Feng
論文名稱(中文):高頻氮化鋁鎵/氮化鎵高電子遷移率電晶體與金氧半-高電子遷移率電晶體之製作與分析
論文名稱(外文):The Fabrication and Analysis of High Frequency AlGaN/GaN HEMT and MOSHEMT
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):盧向成
吳添立
口試委員(外文):Lu, Shiang-Cheng
Wu, Tian-Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:106063504
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:58
中文關鍵詞:氮化鋁鎵氮化鎵高電子遷移率電晶體
外文關鍵詞:AlGaNGaNHEMTs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:377
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文在高阻值矽基板(111)上的氮化鋁鎵/氮化鎵試片製作出兩種不同閘極結構的元件,分別為傳統的蕭特基接觸以及金氧半閘極結構,並且探討兩種元件直流與高頻特性的影響。同時,本實驗也有委託公司代工目前製程發展較成熟的高電子遷移率電晶體與實驗室自行製作的元件進行比較。
在實驗室製作的閘極線寬0.5μm之元件中,於直流特性的部份,傳統高電子遷移率電晶體之飽和電流密度與最大轉導增益分別為1255mA/mm與278mS/mm而金氧半-高電子遷移率電晶體則為995mA/mm與206 mS/mm;在高頻特性部分,傳統的高電子遷移率電晶體之fT與fmax分別為10.2 GHz與20 GHz,受益於較高的直流轉導,二者數值皆高於金氧半-高電子遷移率電晶體的4.9 GHz與8.3 GHz。
由公司代工的試片,有著閘極線寬0.25 μm的元件,飽和電流密度與最大轉導增益分別為1.88A/mm與711mS/mm,明顯地比於實驗室自行製作的試片高上許多,而截止頻率與最大震盪頻率也是較高27.9GHz與 43.9GHz。
In this thesis, we fabricated and measured AlGaN/GaN HEMT and MOSHEMT on a high resistivity Si (111) substrate and compared their DC and RF characteristics. There are two types of gate structures to be studied: one is a traditional Schottky gate, and the other is a metal-oxide-semiconductor (MOS) gate. In this study, devices fabricated in the lab are also compared with devices fabricated through a foundry service.
For the DC characteristics of the devices fabricated in the lab, which features a gate length of 0.5 μm, the saturation current ID,sat density and the extrinsic maximum transconductance (Gm) of HEMT and MOS-HEMT are1.255 A/mm and 278 mS/mm, and 0.995 A/mm and 206 mS/mm, respectively. For high-frequency characteristics, HEMT shows a cutoff frequency fT of 10.2 GHz and a maximum oscillation frequency fmax of 20 GHz, which are also higher than the MOSHEMT’s values of 4.9 GHz and 8.3 GHz because of the higher transconductance.
For the devices through a foundry service with a gate length of 0.25 μm, the saturation current density and extrinsic maximum transconductance are 1.88A / mm and 711mS / mm respectively, which are significantly higher than the devices made in the lab. The cut-off frequency and maximum oscillation frequency reach 27.9GHz and 43.9GHz.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 序論 1
1.1 前言 1
1.2 GaN材料特性介紹 2
1.2.1 自發極化 3
1.2.2 壓電極化 3
1.2.3 氮化鋁鎵/氮化鎵異質結構 4
1.3 文獻回顧 5
1.4 研究方向簡介 7
1.4.1 動機 7
1.4.2 論文架構 8
第二章 高頻與量測原理 9
2.1 高頻參數簡介 9
2.2 S參數量測系統 14
2.2.1 儀器校正 15
2.2.2 去嵌入化(De-embedding) 15
第三章 元件設計與製程步驟 19
3.1 氮化鋁鎵/氮化鎵 HEMT 製程步驟 20
3.1.1 蝕刻對準記號(Mask1) 20
3.1.2 元件隔離(Mask2) 22
3.1.3 源極/汲極歐姆接觸(Mask3) 23
3.1.4 閘極金屬(Mask4) 24
3.1.5 鈍化層沉積與襯墊金屬(Mask5) 25
3.2 金氧半-高電子遷移率電晶體 MOS-HEMT 製程步驟 26
3.3 元件尺寸與俯視圖 27
第四章 元件量測與分析 28
4.1 直流量測結果 28
4.1.1 A公司製程試片之直流特性 28
4.1.2 2DEG TLM測試結構 31
4.1.3 Schottky HEMT之直流特性 32
4.1.4 MOS HEMT之直流特性 35
4.2 高頻S參數量測結果 38
4.2.1 A公司試片高頻特性 38
4.2.2 Schottky HEMT高頻特性 39
4.2.3 MOS-HEMT 高頻特性 41
第五章 小訊號電路模型理論 43
5.1 外部寄生元件(Extrinsic element) 45
5.1.1 外部寄生電容萃取 45
5.1.2 外部寄生電感、電阻萃取 46
5.2 內部本質元件萃取 51
第六章 結論 54
參考文獻 56
[1] B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," Electron Device Letters, vol. 10, no. 10, pp. 455 - 457, Oct 1989.
[2] R. F. Davis, J. W. Palmoue and J. A. Edmond, "A review of the status of diamond and silicon carbide devices for high-power, -temperature, and -frequency applications," in Electron Devices Meeting, 1990.
[3] O. Ambacher, B. Foutz and M. Stutzmann, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," J. Appl. Phys, vol. 85, no. 6, p. 334, March 1999.
[4] F. Sacconi, A. D. Carlo, P. Lugli and H. Morkoç, "Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs," Transactions on Electron Devices, vol. 48, no. 3, pp. 450-457, Mar 2001.
[5] I. P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S. P. DenBaars, J. S. Speck and U. K. Mishra, "AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy," Journal of Applied Physics, vol. 90, no. 10, pp. 5196-5201, Nov 2001.
[6] S. Keller, Y. F. Wu, G. Parish, N. Ziang, J. J. Xu, B. P. Keller, S. P. DenBaars and U. K. Mishra, "Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB," IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 552-559, March 2001.
[7] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J. C. Roberts, J. W. Brown, S. Singhal and K. J. Linthicum, "12 W/mm AlGaN-GaN HFETs on silicon substrates," IEEE Electron Device Lett, vol. 25, no. 7, pp. 459-461, Jul 2004.
[8] C. Liu, E. F. Chor and L. S. Tan, "Enhanced device performance of AlGaN/GaN HEMTs using HfO 2 high- k dielectric for surface passivation and gate oxide," Semicond. Sci. Technol, vol. 22, no. 5, pp. 522-527, May 2007.
[9] F. Lecourt, "High transconductance AlGaN/GaN HEMT with thin barrier on Si (111) substrate," in 2010 Proceedings of the European Solid State Device Research Conference, 2010.
[10] J. W. Chung, W. E. Hoke, E. M. Chumbes and T. Palacios, "AlGaN/GaN HEMT With 300-GHz fmax," IEEE Electron Device Lett., vol. 31, no. 3, pp. 195 -197, 2010.
[11] K. Shinohara, D. Regan, A. Corrion, D. Brown, P. M. Asbeck and M. Micovic, "Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency," IEEE International Electron Device Meeting, pp. 19.1.1-19.1.4, 2011.
[12] S. Bouzid-Driad, "AlGaN/GaN HEMTs on Silicon Substrate With 206-GHz," IEEE Electron Device Lett., vol. 34, no. 1, pp. 36-38, Jan 2013.
[13] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu and C. S. Ho, "Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique," IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 213-220, Jan 2013.
[14] S. Huang, K. Wei, G. Liu, Y. Zheng, X. Wang, L. Pang, X. Kong, X. Liu, Z. Tang, S. Yang, Q. Jiang and K. J. Chen, "High- fMAX High Johnson's Figure-of-Merit 0.2- μm Gate AlGaN/GaN HEMTs on Silicon Substrate With AlN/SiNx Passivation," IEEE Electron Device Lett, vol. 35, p. 315, 2014.
[15] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice-Hall, 1996.
[16] M. C. A. M. Koolen, J. A. M. Geelen and M. P. J. G. Versleijen, "An improved de-embedding technique for on-wafer high-frequency characterization," IEEE Bipolar Circuits and Technology Meeting, Sep 1991.
[17] Y. Goto, Y. Natsukari and M. Fujishima, "New On-Chip De-Embedding for Accurate Evaluation of Symmetric Devices," Japanese Journal of Applied Physics, vol. 47, no. 4, p. 2812–2816, 2008.
[18] G. Dambrine, A. Cappy, F. Heliodore and E. Playez, "A new method for determining the FET small-signal equivalent circuit," IEEE Trans. Microwave Theory Tech, vol. 36, pp. 1151-1159, July 1998.
[19] F. Diamant and M. Laviron, "Measurement of the extrinsic series elements of a microwave MESFET under zero current condition," in Proc. 12th European Microwave Conf., 1982.
[20] Q. Fan, J. Leach and H. Morkoc, "Small signal equivalent circuit modeling for AlGaN/GaN HFET: Hybrid extraction method for determining circuit elements of AlGaN/GaN HFET," Proc. IEEE, vol. 98, no. 7, pp. 1140-1150, Jul 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *