|
[1] Byeon, W., Wang, Q., Kumar Srivastava, R., and Koumoutsakos, P. Con- textvp: Fully context-aware video prediction. In Proceedings of the European Conference on Computer Vision (ECCV) (2018), pp. 753–769. [2] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. Encoder- decoder with atrous separable convolution for semantic image segmentation. In ECCV (2018). [3] Dollár, P., Wojek, C., Schiele, B., and Perona, P. Pedestrian detection: A benchmark. In CVPR (June 2009). [4] Gao, H., Xu, H., Cai, Q.-Z., Wang, R., Yu, F., and Darrell, T. Disen- tangling propagation and generation for video prediction. arXiv preprint arXiv:1812.00452 (2018). [5] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. Vision meets robotics: The kitti dataset. International Journal of Robotics Research (IJRR) (2013). [6] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. In Advances in neural information processing systems (2014), pp. 2672–2680. [7] Hao, Z., Huang, X., and Belongie, S. Controllable video generation with sparse trajectories. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 7854–7863. [8] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778. [9] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural compu- tation 9, 8 (1997), 1735–1780. [10] Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and Brox, T. Flownet 2.0: Evolution of optical flow estimation with deep networks. In Pro- ceedings of the IEEE conference on computer vision and pattern recognition (2017), pp. 2462–2470. [11] Jang, Y., Kim, G., and Song, Y. Video prediction with appearance and motion conditions. arXiv preprint arXiv:1807.02635 (2018). [12] Kingma, D. P., and Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013). [13] Lee, A. X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., and Levine, S. Stochastic adversarial video prediction. arXiv preprint arXiv:1804.01523 (2018). [14] Liang, X., Lee, L., Dai, W., and Xing, E. P. Dual motion gan for future-flow embedded video prediction. In Proceedings of the IEEE International Confer- ence on Computer Vision (2017), pp. 1744–1752. 40[15] Liu, Z., Yeh, R. A., Tang, X., Liu, Y., and Agarwala, A. Video frame synthesis using deep voxel flow. In Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 4463–4471. [16] Lotter, W., Kreiman, G., and Cox, D. Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104 (2016). [17] Luc, P., Couprie, C., Lecun, Y., and Verbeek, J. Predicting future instance segmentation by forecasting convolutional features. In Proceedings of the Eu- ropean Conference on Computer Vision (ECCV) (2018), pp. 584–599. [18] Luc, P., Neverova, N., Couprie, C., Verbeek, J., and LeCun, Y. Predicting deeper into the future of semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 648–657. [19] Mirza, M., and Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014). [20] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical im- age computing and computer-assisted intervention (2015), Springer, pp. 234– 241. [21] Rosello, P. Predicting future optical flow from static video frames. Retrieved on: Jul 18 (2016). [22] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X. Improved techniques for training gans. In Advances in neural information processing systems (2016), pp. 2234–2242. [23] Villegas, R., Yang, J., Hong, S., Lin, X., and Lee, H. Decomposing motion and content for natural video sequence prediction. arXiv preprint arXiv:1706.08033 (2017). [24] Walker, J., Gupta, A., and Hebert, M. Dense optical flow prediction from a static image. In Proceedings of the IEEE International Conference on Com- puter Vision (2015), pp. 2443–2451. [25] Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-c. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In Advances in neural information processing systems (2015), pp. 802–810. [26] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired image-to-image trans- lation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision (2017), pp. 2223–2232. |