|
[1] S. Assefa, T.M. Keane, T.D. Otto, C. Newbold and M. Berriman (2009) ABACAS algorithm-based automatic contiguation of assembled sequences. Bioinformatics, 25, 1968–1969. [2] M. Galardini, E.G. Biondi, M. Bazzicalupo and A. Mengoni (2011) CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code for Biology and Medicine, 6, 11. [3] P. Husemann and J. Stoye (2010) r2cat: synteny plots and comparative assembly. Bioinformatics, 26, 570–571. [4] D.C. Richter, S.C. Schuster and D.H. Huson (2007) OSLay: optimal syntenic layout of unfinished assemblies. Bioinformatics, 23, 1573–1579. [5] A.I. Rissman, B. Mau, B.S. Biehl, A.E. Darling, J.D. Glasner and N.T. Perna (2009) Reordering contigs of draft genomes using the Mauve Aligner. Bioinformatics, 25, 2071–2073. [6] S.A. van Hijum, A.L. Zomer, O.P. Kuipers and J. Kok (2005) Projector 2 contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies. Nucleic Acids Research, 33, 560–566. [7] Z. Dias, U. Dias and J.C. Setubal (2012) SIS: a program to generate draft genome sequence scaffolds for prokaryotes. BMC Bioinformatics, 13, 96. [8] C.L. Li, K.T. Chen, C.L. Lu (2013) Assembling contigs in draft genomes using reversals and block-interchanges. BMC Bioinformatics, 14, S9. [9] C.L. Lu, K.T. Chen, S.Y. Huang and H.T. Chiu (2014) CAR: contig assembly of prokaryotic draft genomes using rearrangements. BMC Bioinformatics, 15, 381. [10] C.L. Lu (2015) An efficient algorithm for the contigs ordering problem under algebraic rearrangement distance. Journal of Computational Biology, 22, 975–987. [11] K.T. Chen, C.L. Liu, S.H. Huang, H.T. Shen, Y.K. Shieh, H.T. Chiu and C.L. Lu (2018) CSAR: a contig scaffolding tool using algebraic rearrangements, Bioinformatics, 34, 109–111. [12] J. Bailey and E. Eichler (2006) Primate segmental duplication: crucibles of evolution, diversity and disease. Nature Reviews Genetics, 7, 552–564. [13] M. Lynch (2007) The Origins of Genome Architecture. Sinauer, Sunderland, MA. [14] M. Shao and B. Moret (2016) A fast and exact algorithm for the exemplar breakpoint distance. Journal of Computational Biology, 23, 337–346. [15] M. Shao and B. Moret (2017) On computing breakpoint distances for genomes with duplicate genes. Journal of Computational Biology, 24, 571–580. [16] T.W. Wu (2019) A heuristic algorithm for solving scaffolding problem based on exemplar model. Thesis, National Tsing Hua University, Taiwan. [17] Y.J. Chen (2019) A heuristic algorithm for solving scaffolding problem based on maximum-matching model. Thesis, National Tsing Hua University, Taiwan. [18] I. Minkin, A. Patel, M. Kolmogorov, N. Vyahhi and S. Pham (2013) Sibelia: A scalable and comprehensive synteny block generation tool for closely related microbial genomes. In, International Workshop on Algorithms in Bioinformatics, Springer, 215–229. [19] D. Sankoff (1999) Genome rearrangement with gene families. Bioinformatics, 15, 909–917.
|