帳號:guest(18.191.86.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪維均
作者(外文):Hung, Wei-Chun
論文名稱(中文):時序性社群網路中的最大(L, K)-lasting Cores
論文名稱(外文):Maximum (L, K)-lasting Cores in Temporal Social Networks
指導教授(中文):沈之涯
指導教授(外文):Shen, Chih-Ya
口試委員(中文):帥宏翰
陳怡伶
口試委員(外文):Shuai, Hong-Han
Chen, Yi-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:106062605
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:30
中文關鍵詞:密集子圖圖探勘時序性網路
外文關鍵詞:Densest subgraphGraph MiningTemporal Networks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:449
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在圖的探勘中,找到關係緊密的群體已經是一個基本課題,例如在分析社群網路、合作網路上,我們可以從中找出關係緊密的群體。可惜的是,在之前大部分的研究中,社群搜尋通常忽略了時間的資訊,可能因此少發現了很多有趣的群體。如果考慮了時間,那我們就可以獲得更多有用的資訊。
在本論文中,我們將研究如何於時序性網路中找到一個有密集互動的群體。在時序性網路中,每條邊會伴隨著一個時間標記,用來顯示此條邊會於何時出現,我們提出了一個模型叫(L, K)-lasting core,先用基本演算法找出最大的群體,再套用其他進階技巧來加快我們找出這個群體的時間。
我們在不同的資料集上進行實驗,結果驗證了我們方法的效率、有效性及可擴展性,確實是可以找到有著密集互動的群體。
Extracting dense subgroup is a fundamental task in graph mining. We can find dense subgroups from social networks and collaboration networks after analyzing them. Unfortunately, they usually ignored temporal information on community search in most previous research. Thus, some interesting groups may be undiscovered. If we consider the temporal information, we can receive more useful information.
In this paper, we study on finding a dense subgroup in temporal network. In a temporal network, each edge has a timestamp which means the time it appeared. We propose a model called (L, K)-lasting core. First, we use a baseline algorithm to find the maximum group and then apply other advanced techniques to speed up the searching time.
We conduct experiments on different datasets. The result demonstrates the scalability, efficiency and effectiveness of our methods. We can indeed find a group which members have intensive interactions.
1 Introduction 1
2 Related Work 4
2.1 Dense Subgraph 4
2.2 Multilayer Network 5
3 Problem Definition 7
4 Methods 9
4.1 Naive Algorithm 9
4.2 Temporal Core Finding-Basic (TCFB) 10
4.3 Min-Degree Pruning (MDP) 11
4.4 Reordering for Intersection Minimization (RIM) 12
4.5 Time complexity and optimality 15
5 Experiments 18
5.1 Optimal solution 19
5.2 Comparison of methods 21
5.3 Case study 25
6 Conclusions 27
References 28
[1] Abello, J., Resende, M. G., and Sudarsky, S. Massive quasi-clique detection. In Latin American symposium on theoretical informatics (2002), Springer, pp. 598–612.
[2] Angel, A., Sarkas, N., Koudas, N., and Srivastava, D. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. Proceedings of the VLDB Endowment 5, 6 (2012), 574–585.
[3] Balasundaram, B., Butenko, S., and Hicks, I. V. Clique relaxations in social network analysis: The maximum k-plex problem. Operations Research 59, 1 (2011), 133–142.
[4] Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. The maximum clique problem. In Handbook of combinatorial optimization. Springer, 1999, pp. 1–74.
[5] Chen, J., and Saad, Y. Dense subgraph extraction with application to community detection. IEEE Transactions on knowledge and data engineering 24, 7 (2010), 1216–1230.
[6] Cheng, J., Ke, Y., Chu, S., and Özsu, M. T. Efficient core decomposition in massive networks. In 2011 IEEE 27th International Conference on Data Engineering (2011), IEEE, pp. 51–62.
[7] Dourisboure, Y., Geraci, F., and Pellegrini, M. Extraction and classification of dense communities in the web. In Proceedings of the 16th international conference on World Wide Web (2007), ACM, pp. 461–470.
[8] Epasto, A., Lattanzi, S., and Sozio, M. Efficient densest subgraph computation in evolving graphs. In Proceedings of the 24th International Conference on World Wide Web (2015), International World Wide Web Conferences Steering
Committee, pp. 300–310.
[9] Galimberti, E., Barrat, A., Bonchi, F., Cattuto, C., and Gullo, F. Mining (maximal) span-cores from temporal networks. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management (2018), ACM, pp. 107–116.
[10] Galimberti, E., Bonchi, F., and Gullo, F. Core decomposition and densest subgraph in multilayer networks. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (2017), ACM, pp. 1807–1816.
[11] Himmel, A.-S., Molter, H., Niedermeier, R., and Sorge, M. Enumerating maximal cliques in temporal graphs. In Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (2016), IEEE Press, pp. 337–344.
[12] Hu, H., Yan, X., Huang, Y., Han, J., and Zhou, X. J. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21, suppl_1 (2005), i213–i221
[13] Hu, S., Wu, X., and Chan, T. Maintaining densest subsets efficiently in evolving hypergraphs. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (2017), ACM, pp. 929–938.
[14] Huang, X., Cheng, H., Qin, L., Tian, W., and Yu, J. X. Querying k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data (2014), ACM, pp. 1311–1322.
[15] Jethava, V., and Beerenwinkel, N. Finding dense subgraphs in relational graphs. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (2015), Springer, pp. 641–654.
[16] Kim, J., and Lee, J.-G. Community detection in multi-layer graphs: A survey. ACM SIGMOD Record 44, 3 (2015), 37–48.
[17] Li, R.-H., Qin, L., Yu, J. X., and Mao, R. Influential community search in large networks. Proceedings of the VLDB Endowment 8, 5 (2015), 509–520.
[18] Li, R.-H., Su, J., Qin, L., Yu, J. X., and Dai, Q. Persistent community search in temporal networks. In 2018 IEEE 34th International Conference on Data Engineering (ICDE) (2018), IEEE, pp. 797–808.
[19] Luenberger, D. G., Ye, Y., et al. Linear and nonlinear programming, vol. 2. Springer, 1984.
[20] Pei, J., Jiang, D., and Zhang, A. On mining cross-graph quasi-cliques. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (2005), ACM, pp. 228–238.
[21] Rossi, R. A., and Ahmed, N. K. The network data repository with interactive graph analytics and visualization. In AAAI (2015).
[22] Rozenshtein, P., Bonchi, F., Gionis, A., Sozio, M., and Tatti, N. Finding events in temporal networks: Segmentation meets densest-subgraph discovery. In 2018 IEEE International Conference on Data Mining (ICDM) (2018), IEEE,
pp. 397–406.
[23] Rozenshtein, P., Tatti, N., and Gionis, A. Finding dynamic dense subgraphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 11, 3 (2017), 27.
[24] Saríyüce, A. E., Gedik, B., Jacques-Silva, G., Wu, K.-L., and Çatalyürek, Ü. V. Streaming algorithms for k-core decomposition. Proceedings of the VLDB Endowment 6, 6 (2013), 433–444.
[25] Wang, J., and Cheng, J. Truss decomposition in massive networks. Proceedings of the VLDB Endowment 5, 9 (2012), 812–823.
[26] Wu, H., Cheng, J., Lu, Y., Ke, Y., Huang, Y., Yan, D., and Wu, H. Core decomposition in large temporal graphs. In 2015 IEEE International Conference on Big Data (Big Data) (2015), IEEE, pp. 649–658.
[27] Zhang, F., Zhang, Y., Qin, L., Zhang, W., and Lin, X. When engagement meets similarity: efficient (k, r)-core computation on social networks. Proceedings of the VLDB Endowment 10, 10 (2017), 998–1009.
[28] Zhu, R., Zou, Z., and Li, J. Diversified coherent core search on multi-layer graphs. In 2018 IEEE 34th International Conference on Data Engineering (ICDE) (2018), IEEE, pp. 701–712.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *