|
[1] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Optics Express, p.16(26):2143421445, 2008. [2] X. Chen, J. Cheng, R. Song, Y. Liu, R. Ward, and Z. J. Wang, “Video based heart rate measurement: Recent advances and future prospects,” IEEE Transactions on Instrumentation and Measurement, pp. 1–16, 2018. [3] C. Wang, T. Pun, and G. Chanel, “A comparative survey of methods for remote heart rate detection from frontal face videos,” Frontiers in Bioengineering and Biotechnology, vol. 6, p. 33, 2018. [4] Y. Qiu, Y. Liu, J. Aeaga-Falconi, H. Dong, and A. Saddik, “EVM-CNN: Real-time contactless heart rate estimation from facial video,” IEEE Transactions on Multimedia, vol. 21, no. 7, pp.1778–1787, 2018. [5] W. Chen and D. McDuff, “DeepPhys: Video-based physiological measurement using convolutional attention networks,” in Proc. ECCV, 2018. [6] R. Spetlik, V. Franc, J. Cech, and J. Matas, “Visual heart rate estimation with convolutional neural network,” in Proc. BMVC, 2018. [7] X. Niu, H. Han, S. Shan, and X. Chen, “Synrhythm: Learning a deep heart rate estimator from general to specific,” in Proc. ICPR, 2018. [8] W. Chen and D. McDuff, “DeepMag: Source specific motion magnification using gradient ascent,” arXiv:1808.03338v1, 2018. [9] Z. Yu, X. Li, and G. Zhao, “Recovering remote photoplethysmograph signal from facial videos using spatio-temporal convolutional networks,” arXiv:1905.02419v1, 2019. [10] G. Hsu, A. Ambikapathi, and M. Chen, “Deep learning with time-frequency representation for pulse estimation from facial videos,” in Proc. IJCB, 2017. [11] Yang, X. Li, and B. Zhang, “Heart rate estimation from facial videos based on convolutional neural network,” in Proc. IC-NIDC, pp. 45–49, 2018 [12] Niu, X. Zhao, H. Han, A. Das, A. Dantcheva, S. Shan, and X. Chen, “Robust remote heart rate estimation from face utilizing spatial-temporal attention,” in Proc. IEEE FG 2019, pp. 1–8, 2019. [13] G. d. Haan and V. Jeanne, “Robust pulse rate from chrominance-based rppg,” IEEE Transactions on Biomedical Engineering, vol. 60, pp. 2878–2886, 2013. [14] S. Tulyakov, X. Pineda, E. Ricci, L. Yin, J. F. Cohn, and N. Sebe, “Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions,” in Proc. CVPR, 2016. [15] Y. Lin and Y. Lin, “Step count and pulse rate detection based on the contactless image measurement method,” IEEE Transactions on Multimedia, vol. 20, no. 8, pp. 2223–2231, 2018. [16] A. Bulat and G. Tzimiropoulos, “How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks),” in Proc. ICCV, 2017. [17] D. Datcu, M. Cidota, S. Lukosch, and L. Rothkrantz, “Noncontact automatic heart rate analysis in visible spectrum by specific face regions,” In Proc. ACM ICPS, vol. 767, 2013. [18] G. Heusch, A. Anjos, and S. Marcel, “A reproducible study on remote heart rate measurement,” arXiv:1709.00962, 2017. [19] R. Stricker, S. Mller, and H. M. Gross, “Non-contact video-based pulse rate measurement on a mobile service robot,” The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp.1056–1062, 2014. [20] W. Wang, S. Stuijk, and G. de Haan, “A novel algorithm for remote photoplethysmography: Spatial subspace rotation,” IEEE transactions on bio-medical engineering, vol. 63, pp. 1974–1984, 2016. [21] X. Li, J. Chen, G. Zhao, and M. Pietikinen, “Remote heart rate measurement from face videos under realistic situations,” in Proc. CVPR, 2014. |