|
Abadi, Martín et al. (2016). “Tensorflow: a system for large-scale machine learning.” In: Anzai, Akiyuki, Xinmiao Peng, and David C Van Essen (2007). “Neurons in monkey visual area V2 encode combinations of orientations”. In: Nature neuroscience 10.10, p. 1313. Biederman, Irving (1987). “Recognition-by-components: a theory of human image understanding”. In: Psychological review 94.2, p. 115. Bojarski, Mariusz et al. (2016). “End to end learning for self-driving cars”. In: arXiv preprint arXiv:1604.07316. Cai, Zhaowei et al. (2016). “A unified multi-scale deep convolutional neural network for fast object detection”. In: Proc. of ECCV. Chen, Chun-Fu et al. (2019). “Big-little net: An efficient multi-scale feature representation for visual and speech recognition”. In: Cheng, Gong, Peicheng Zhou, and Junwei Han (2016). “Rifd-cnn: Rotation-invariant and fisher discriminative convolutional neural networks for object detection”. In: Proc. of CVPR. Cheng, Xiuyuan et al. (2019). “RotDCF: Decomposition of Convolutional Filters for Rotation- Equivariant Deep Networks”. In: Proc. of ICLR. Codevilla, Felipe et al. (2018). “End-to-End Driving Via Conditional Imitation Learning”. In: Proc. of ICRA. Cohen, Taco and Max Welling (2016). “Group Equivariant Convolutional Networks”. In: Proc. of ICML. – (2017). “Steerable CNNs”. In: Proc. of ICLR. Dai, Zhuyun et al. (2018). “Convolutional neural networks for soft-matching n-grams in ad-hoc search”. In: Proc. of the Eleventh ACM International Conference on Web Search and Data Mining. ACM, pp. 126–134. Ecker, Alexander S. et al. (2019). “A rotation-equivariant convolutional neural network model of primary visual cortex”. In: Proc. of ICLR. Esteva, Andre et al. (2019). “A guide to deep learning in healthcare”. In: Nature Medicine 25. Fukushima, Kunihiko and Sei Miyake (1982). “Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition”. In: Competition and cooperation in neural nets. Springer, pp. 267–285. 25 Gehring, Jonas et al. (2017a). “A Convolutional Encoder Model for Neural Machine Translation”. In: Proc. of ACL. Gehring, Jonas et al. (2017b). “Convolutional sequence to sequence learning”. In: Proc. of ICML. Godard, Clément, Oisin Mac Aodha, and Gabriel J Brostow (2017). “Unsupervised monocular depth estimation with left-right consistency”. In: Proc. of CVPR, pp. 6602–6611. Gong, Yunchao et al. (2014). “Multi-scale Orderless Pooling of Deep Convolutional Activation Features”. In: Gotts, Stephen J et al. (2013). “Two distinct forms of functional lateralization in the human brain”. In: Proc. of the National Academy of Sciences, p. 201302581. He, Kaiming et al. (2014). “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition”. In: Proc. of ECCV. – (2016). “Deep residual learning for image recognition”. In: Proc. CVPR, pp. 770–778. He, Kaiming et al. (2017). “Mask r-cnn”. In: Proc. of ICCV. IEEE, pp. 2980–2988. Henriques, J. and A. Vedaldi (2017). “Warped Convolutions: Efficient Invariance to Spatial Transformations”. In: Proc. of ICML. Heydt, Rüdiger von der, Esther Peterhans, and Gunter Baumgartner (1984). “Illusory contours and cortical neuron responses”. In: Science 224.4654, pp. 1260–1262. Hinton, Geoffrey E, Alex Krizhevsky, and Sida D Wang (2011). “Transforming auto-encoders”. In: International Conference on Artificial Neural Networks. Hinton, Geoffrey E, Sara Sabour, and Nicholas Frosst (2018). “Matrix capsules with EM routing”. In: Proc. of ICLR. Hubel, David H and Torsten N Wiesel (1962). “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex”. In: The Journal of physiology 160.1, pp. 106– 154. Jaderberg, Max, Karen Simonyan, Andrew Zisserman, et al. (2015). “Spatial transformer networks”. In: Proc. of NIPS. Jia, Xu et al. (2016). “Dynamic Filter Networks”. In: Proc. of NIPS. Kendall, Alex et al. (2017). “End-to-end learning of geometry and context for deep stereo regression”. In: Proc. of ICCV, pp. 66–75. 26 Kheradpisheh, Saeed Reza et al. (2016). “Deep networks can resemble human feed-forward vision in invariant object recognition”. In: Scientific reports 6, p. 32672. Kim, Byungkwan, Hyunseong Kang, and Seong-Ook Park (2017). “Drone Classification Using Convolutional Neural Networks With Merged Doppler Images.” In: Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In: arXiv preprint arXiv:1412.6980. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification with deep convolutional neural networks”. In: Proc. of NIPS, pp. 1097–1105. Kyrkou, Christos et al. (2018). “DroNet: Efficient convolutional neural network detector for real- time UAV applications”. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018. IEEE, pp. 967–972. Lai, Kevin et al. (2011). “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”. In: Laptev, Dmitry et al. (2016). “TI-POOLING: transformation-invariant pooling for feature learning in convolutional neural networks”. In: Proc. of CVPR. Laskar, Md Nasir Uddin, Luis G Sanchez Giraldo, and Odelia Schwartz (2018). “Correspondence of Deep Neural Networks and the Brain for Visual Textures”. In: arXiv preprint arXiv:1806.02888. LeCun, Yann, Fu Jie Huang, and Leon Bottou (2004). “Learning methods for generic object recognition with invariance to pose and lighting”. In: Proc. of CVPR. Vol. 2. IEEE, pp. II–104. LeCun, Yann et al. (1989). “Backpropagation applied to handwritten zip code recognition”. In: Neural computation 1.4, pp. 541–551. LeCun, Yann et al. (1998). “Gradient-based learning applied to document recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324. Lin, Tsung-Yi et al. (2017a). “Feature pyramid networks for object detection”. In: Proc. of CVPR. Lin, Tsung-Yi et al. (2017b). “Focal Loss for Dense Object Detection”. In: Proc. of ICCV. IEEE, pp. 2999–3007. Liu, Ming-Yu, Thomas Breuel, and Jan Kautz (2017). “Unsupervised image-to-image translation networks”. In: Proc. of NIPS, pp. 700–708. 27 Long, Bria and Talia Konkle (2018). The role of textural statistics vs. outer contours in deep CNN and neural responses to objects. http://konklab.fas.harvard.edu/ConferenceProceedings/ Long_2018_CCN.pdf. Long, Jonathan, Evan Shelhamer, and Trevor Darrell (2015). “Fully convolutional networks for semantic segmentation”. In: Proc. of CVPR, pp. 3431–3440. Maninis, Kevis-Kokitsi et al. (2016). “Convolutional oriented boundaries”. In: Proc. of ECCV. Maruko, Ichiro et al. (2008). “Postnatal development of disparity sensitivity in visual area 2 (v2) of macaque monkeys”. In: Journal of Neurophysiology 100.5, pp. 2486–2495. Maturana, Daniel and Sebastian Scherer (2015). “VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition”. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems. McDonald, Ryan, George Brokos, and Ion Androutsopoulos (2018). “Deep Relevance Ranking using Enhanced Document-Query Interactions”. In: Proc. of EMNLP, pp. 1849–1860. Milner, David and Mel Goodale (2006). The visual brain in action. Oxford University Press. Moura, Thiago DO et al. (2014). “Design of a dual lens system for a micromachined optical setup”. In: Proc. Microelectronics Technology and Devices (SBMicro). IEEE, pp. 1–4. Murphy, Penelope C, Simon G Duckett, and Adam M Sillito (1999). “Feedback connections to the lateral geniculate nucleus and cortical response properties”. In: Science 286.5444, pp. 1552–1554. Peer, David, Sebastian Stabinger, and Antonio Rodriguez-Sanchez (2018). “Training Deep Capsule Networks”. In: arXiv preprint arXiv:1812.09707. Qi, Charles R et al. (2016). “Volumetric and multi-view cnns for object classification on 3d data”. In: Proc. of CVPR. Qi, Charles R et al. (2017). “Pointnet: Deep learning on point sets for 3d classification and segmentation”. In: Qi, Kunlun et al. (2018). “Concentric Circle Pooling in Deep Convolutional Networks for Remote Sensing Scene Classification”. In: Remote Sensing. Qiu, Fangtu T and Rüdiger Von Der Heydt (2005). “Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules”. In: Neuron 47.1, pp. 155–166. 28 Real, Esteban et al. (2018). “Regularized evolution for image classifier architecture search”. In: arXiv preprint arXiv:1802.01548. Redmon, Joseph et al. (2016). “You only look once: Unified, real-time object detection”. In: Proc. of CVPR, pp. 779–788. Reid, R Clay and Jose-Manuel Alonso (1995). “Specificity of monosynaptic connections from thalamus to visual cortex”. In: Nature 378.6554, p. 281. Sabour, Sara, Nicholas Frosst, and Geoffrey E Hinton (2017). “Dynamic routing between capsules”. In: Proc. of NIPS. Su, Hang et al. (2015). “Multi-view convolutional neural networks for 3d shape recognition”. In: Proc. of ICCV. Von Der Heydt, Rüdiger, Hong Zhou, and Howard S Friedman (2000). “Representation of stereoscopic edges in monkey visual cortex”. In: Vision research 40.15, pp. 1955–1967. Wallis, Thomas SA et al. (2017). “A parametric texture model based on deep convolutional features closely matches texture appearance for humans”. In: Journal of vision 17.12, pp. 5–5. Weiler, Maurice, Fred A Hamprecht, and Martin Storath (2018). “Learning steerable filters for rotation equivariant CNNs”. In: Proc. of CVPR. Worrall, Daniel E et al. (2017). “Harmonic networks: Deep translation and rotation equivariance”. In: Proc. of CVPR. Wu, Zhirong et al. (2015). “3d shapenets: A deep representation for volumetric shapes”. In: Proc. of CVPR. Wurtz, Robert H, Eric R Kandel, et al. (2000). “Central visual pathways”. In: Principles of neural science 4, pp. 523–545. Yan, Xinchen et al. (2016). “Perspective transformer nets: Learning single-view 3d object reconstruction without 3d supervision”. In: Proc. of NIPS, pp. 1696–1704. Yang, Songfan and Deva Ramanan (2015). “Multi-scale recognition with DAG-CNNs”. In: Proc. of ICCV. Zhou, Yanzhao et al. (2017). “Oriented response networks”. In: Proc. of CVPR. Zhu, Jun-Yan et al. (2017). “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”. In: Proc. of ICCV. |