|
[1] J. Park, S. Woo, J.Y. Lee, and I.S. Kweon, “Bam: Bottleneck attention module,” in Proc. BMVC, 2018. [2] S. Woo, J. Park, J.Y. Lee, and I.S. Kweon, “Cbam: Convolutional block attention module,” in Proc. ECCV, 2018. [3] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 million image database for scene recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6):1452-1464, 2017. [4] Y. Chen, X. Jin, B. Kang, J. Feng, and S. Yan, “Sharing residual units through collective tensor factorization in deep neural networks,” in Proc. IJCAI, 2018. [5] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path networks,” in Proc. NIPS, 2017. [6] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for image classification with convolutional neural networks.” in Proc. CVPR, 2019. [7] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. van der Maaten, “Exploring the limits of weakly supervised pretraining,” in Proc. ECCV, 2018. [8] Y. Yuan and J. Wang, “Ocnet: Object context network for scene parsing,” arXiv:1809.00916, 2018. [9] J. Fu, J. Liu, H. Tian, Z. Fang, and H. Lu, “Dual attention network for scene segmentation,” in Proc. CVPR, 2019. [10] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual parsing for scene understanding,” in Proc. ECCV, 2018. [11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. CVPR, 2016. [12] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proc. ICCV, 2017. [13] K.J. Hsu, Y.Y. Lin, and Y.Y. Chuang, “Co-attention cnns for unsupervised object co-segmentation,” in Proc. IJCAI, 2018. [14] Z. Dai, M. Chen, S. Zhu, and P. Tan, “Batch feature erasing for person re-identification and beyond,” arXiv: 1811.07130, 2018. [15] Y. Duan, J. Lu, and J. Zhou, “UniformFace: Learning deep equidistributed representation for face recognition,” in Proc. CVPR, 2019. [16] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep features for scene recognition using places database,” in Proc. NIPS, 2014. [17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in Proc. CVPR, 2009. [18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, 86(11):2278-2324, 1998. [19] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” in Proc. CVPR, 2014. [20] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in Proc. ICML, 2019. [21] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. CVPR, 2018. [22] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “Gcnet: Non-local networks meet squeeze-excitation networks and beyond,” arXiv: 1904.11492, 2019.
|