帳號:guest(13.58.217.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴宥銘
作者(外文):Lai, Yu-Ming
論文名稱(中文):頭戴式虛擬實境中之光場技術應用
論文名稱(外文):Capitalizing Light-Field Technology in Head-Mounted Virtual Reality
指導教授(中文):徐正炘
指導教授(外文):Hsu, Cheng-Hsin
口試委員(中文):周志遠
黃俊穎
口試委員(外文):Chou, Jerry
Huang, Chun-Ying
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:106062552
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:54
中文關鍵詞:虛擬實境光場技術
外文關鍵詞:Virtual realityLight field technology3DoF+
相關次數:
  • 推薦推薦:0
  • 點閱點閱:329
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
擴增和虛擬實境(AR / VR)在近年來蔚為風行,而隨著頭戴顯示器的普及使用,它提供了使用者比傳統平面顯示器更加身臨其境的體驗。儘管如此,為了提供更高品質的觀看體驗,研究人員致力於建立一個能夠捕獲更多空間信息的環境。其中,光場技術能夠收集空間中的所有信息,具有很大的發展潛力。在本論文中,我們研究了AR / VR中光場技術應用的兩個發展方向。首先,在微透鏡相機系統中,我們設計了一套自動聚焦VR系統,能夠根據使用者的注視位置自動對場景重新聚焦,並在優化層面設計了2種方法來大幅減少重新聚焦的計算時間。而在相機陣列系統中,我們開發了一套3DoF+ VR系統、並同時設計了一套新的視圖選擇算法,該算法能有效利用場景中的資訊(包刮視圖覆蓋區域、物體遮擋等)來節省視圖合成需要的頻寬及運算量。最後,我們收集了以客觀和主觀角度執行的實驗結果,以評估系統效能。結果表明,對於自動聚焦VR系統,我們的優化將重新聚焦的時間縮短了近319倍,並且與基準系統相比,我們系統的主觀平均意見分數(MOS)高出了19%。而對於視圖選擇算法,我們提出的算法可以得到高達99.67%的平均覆蓋率,只比最優解低了0.1%,而同時我們的計算時間比最優解快了近18倍。
Augmented and Virtual Reality (AR/VR) has become more popular over the years. It delivers a more immersive experience than using the traditional planar monitor with the head-mounted display (HMD). Still, to increase the Quality of Experience (QoE), researchers dedicate to building a better environment with more captured space information. With the capability to retrieve all light information in the space, the light field technology (LF) has excellent potential for the future development of AR/VR technology. In this paper, we study and research two possible directions of LF applications in AR/VR. In the microlens camera system, we design and implement a head-mounted VR system that enables the auto scene refocusing based on the user’s eye gaze. To optimize the latency of the refocusing process, we design two optimization methods that significantly reduce the execution time. In the camera array system, we develop a 3DoF+ VR environment and create a novel view selection algorithm, which can exploit the 3D space information (view scene coverage, object occlusion) of the scene to save both the bandwidth and the computation of view synthesis process. Finally, we hold experiments in both objective and subjective perspectives to evaluate the performance of the systems. The results show that, for the auto-refocus VR system, our optimization methods reduce the refocusing time by up to 319 times and increase the subjective Mean Opinion Score (MOS) by 19% compared to the baseline system. As for the view selection algorithm, our proposed algorithm leads to 99.67% of average synthesis result coverage, which is only 0.1% lower than the optimal solution. However, at the same time, our execution time is about 18 times faster than the optimal solution.
Abstracts
Contents
1. Introduction ---------------------------------------- 1
1.1 Motivation ------------------------------------- 1
1.2 Research Problems ------------------------------ 3
1.3 Contributions ---------------------------------- 4
1.4 Thesis Organization ---------------------------- 5
2. Background ------------------------------------------ 7
2.1 Light Field Technology ------------------------- 7
2.2 Micro-lenses Camera System --------------------- 9
2.2.1 Depth Estimation ------------------------- 11
2.2.2 Image Refocusing ------------------------- 11
2.3 Camera Array System ---------------------------- 13
2.3.1 View Synthesis --------------------------- 14
3. Auto-Refocus VR System ------------------------------ 16
3.1 System Overview -------------------------------- 16
3.1.1 Panorama Generator ----------------------- 17
3.1.2 Refocused Image Generator ---------------- 17
3.1.3 Viewport Player -------------------------- 17
3.2 Optimization Methods --------------------------- 18
3.2.1 Pre-Rendering Image Selection ------------ 18
3.2.2 Viewport Specific Rendering -------------- 19
3.3 Evaluations ------------------------------------ 20
3.3.1 Implementations -------------------------- 20
3.3.2 Objective Measurements ------------------- 21
3.3.3 User Study ------------------------------- 24
4. 3DoF+ VR System ------------------------------------- 25
4.1 System Overview -------------------------------- 25
4.1.1 Hole-Aware View Selector ----------------- 26
4.1.2 View Synthesizer ------------------------- 27
4.1.3 Panorama Player -------------------------- 27
4.2 Hole-Aware View Selection ---------------------- 27
4.2.1 Mask Generation -------------------------- 28
4.2.2 View Selection Algorithm ----------------- 32
4.3 Other Solutions -------------------------------- 36
4.3.1 Pixel Importance-Based View Selection ---- 36
4.3.2 Offline View Selection ------------------- 37
4.4 Evaluations ------------------------------------ 38
4.4.1 Implementation --------------------------- 38
4.4.2 Performance Analysis --------------------- 39
4.4.3 Offline vs. Online View Selection -------- 42
5. Conclusion and Future Work -------------------------- 46
Bibliography ------------------------------------------- 48
[1] Lytro Light Field camera. http://lightfield-forum.com/lytro/lytro-lightfield-camera/, 2013. Accessed August 2019.
[2] RayTrix R11 3D Light Field Camera. http://lightfield-forum.com/raytrix/raytrix-r11-3d-lightfield-camera/, 2014. Accessed August 2019.
[3] Lytro Illum - Professional Light Field Camera. http://lightfield-forum.com/lytro/lytro-illum-professional-light-field-camera/, 2015. Accessed August 2019.
[4] Facebook Spaces. https://www.facebook.com/spaces, 2017. Accessed April 2018.
[5] Lytro Support. https://support.lytro.com/hc/en-us, 2017.
[6] Meet the Lytro Immerge 2.0, a 95-lens VR camera that could soon shoot in 10K. https://www.digitaltrends.com/photography/meet-the-lytro-immerge-2/, 2017. Accessed August 2019.
[7] csmatio .NET Library for Matlab MAT-files. https://sourceforge.net/projects/csmatio/files/, 2018.
[8] Facebook Oculus Rift. https://www.oculus.com, 2018. Accessed May 2018.
[9] Filming the Future with RED and Facebook 360. https://facebook360.fb.com/2018/09/26/film-the-future-with-red-and-facebook-360/, 2018. Accessed August 2019.
[10] FOVE: Eye-Tracking Virtual Reality Headset. https://www.getfove.com/, 2018.
[11] GOOGLE AR AND VR - Experimenting with Light Fields. https://www.blog.google/products/google-ar-vr/experimenting-light-fields/, 2018. Accessed August 2019.
[12] Google Cardboard. https://vr.google.com/cardboard/, 2018. Accessed May 2018.
[13] HTC Vive. https://www.htcvive.com, 2018. Accessed May 2018.
[14] HTC Vive Focus. https://www.vive.com/cn/product/vive-focus-en/, 2018. Accessed May 2018.
[15] Luna 360 VR. http://luna.camera/, 2018. Accessed May 2018.
[16] OpenCV (Open Source Computer Vision Library). https://opencv.org/, 2018.
[17] OpenCVSharp for Unity - Unity Asset Store. https://assetstore.unity.com/packages/tools/integration/opencv-for-unity-100374, 2018.
[18] RayTrix: 3D Light Field Camera Technology. https://raytrix.de/, 2018.
[19] Richo Theta S. https://theta360.com, 2018. Accessed May 2018.
[20] Samsung Gear 360. http://www.samsung.com/global/galaxy/gear-360/, 2018. Accessed May 2018.
[21] Sony Playstation VR. https://www.playstation.com/en-au/explore/playstation-vr/, 2018. Accessed May 2018.
[22] Unity. https://unity.com/, 2018.
[23] A. A. Ageev and M. I. Sviridenko. Approximation algorithms for maximum coverage and max cut with given sizes of parts. In Integer Programming and Combinatorial Optimization, pages 17–30. Springer Berlin Heidelberg, 1999.
[24] S. Avidan and A. Shashua. Novel view synthesis in tensor space. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1034–1040, June 1997.
[25] J. Berent and P. L. Dragotti. Segmentation of epipolar-plane image volumes with occlusion and disocclusion competition. In 2006 IEEE Workshop on Multimedia Signal Processing, pages 182–185, Oct 2006.
[26] C. Birklbauer and O. Bimber. Panorama light-field imaging. EUROGRAPHIC, 33(2):43–52, May 2014.
[27] R. C. Bolles, H. H. Baker, and D. H. Marimont. Epipolar-plane image analysis: An approach to determining structure from motion. International Journal of Computer Vision, 1(1):7–55, Mar. 1987.
[28] V. Boominathan, K. Mitra, and A. Veeraraghavan. Improving resolution and depth-of-field of light field cameras using a hybrid imaging system. In 2014 IEEE International Conference on Computational Photography (ICCP), pages 1–10, May 2014.
[29] K. Carnegie and T. Rhee. Reducing visual discomfort with hmds using dynamic depth of field. IEEE Computer Graphics and Applications, 35(5):34–41, September 2015.
[30] J. Chakareski. Adaptive multiview video streaming: challenges and opportunities. IEEE Communications Magazine, 51(5):94–100, May 2013.
[31] S. E. Chen and L.Williams. View interpolation for image synthesis. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques (SIGGRAPH ’93), pages 279–288. ACM Press, 1993.
[32] B. Clipp, J. Kim, J. Frahm, M. Pollefeys, and R. Hartley. Robust 6dof motion estimation for non-overlapping, multi-camera systems. In 2008 IEEE Workshop on Applications of Computer Vision, pages 1–8. IEEE, Jan. 2008.
[33] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk, and S. Sullivan. High-quality streamable free-viewpoint video. ACM Trans. Graph., 34(4):69:1–69:13, July 2015.
[34] D. Dansereau. Matlab Light Field Toolbox v0.4. https://www.mathworks.com/matlabcentral/fileexchange/49683-light-field-toolbox-v0-4, 2015.
[35] D. G. Dansereau, O. Pizarro, and S. B. Williams. Linear volumetric focus for light field cameras. ACM Trans. Graph., 34(2):15:1–15:20, Mar. 2015.
[36] R. Dor´e, G. Briand, and T. Tapie. Technicolor 3DoFPlus Test Materials. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/M42349, 2018. Meeting held at San Diego USA.
[37] A. Dziembowski, J. Samelak, and M. Doma´nski. View selection for virtual view synthesis in free navigation systems. In 2018 International Conference on Signals and Electronic Systems (ICSES), pages 83–87, Sept. 2018.
[38] S. Fachada, D. Bonatto, A. Schenkel, and G. Lafruit. Depth image based view synthesis with multiple reference views for virtual reality. In 2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), pages 1–4, June 2018.
[39] T. Georgiev and A. Lumsdaine. Superresolution with plenoptic camera 2.0. 2009.
[40] X. Guo, Z. Yu, S. B. Kang, H. Lin, and J. Yu. Enhancing light fields through ray-space stitching. IEEE Transactions on Visualization and Computer Graphics, 22(7):1852–1861, July 2016.
[41] S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum coverage problem. Information Processing Letters, 70(1):39–45, 1999.
[42] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. Gross. Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph., 32:73:1–73:12, 2013.
[43] B. Krolla, M. Diebold, B. Goldluecke, and D. Stricker. Spherical light fields. In Proceedings of the British Machine Vision Conference 2014 : BMVC, 2014, Nottingham, Durham, 2014. BMVA Press.
[44] B. Kroon. Reference View Synthesizer (RVS) manual. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/N18068, 2018. Meeting held at Macau SAR CN.
[45] Y. Lai and C. Hsu. Refocusing supports of panorama light-field images in head-mounted virtual reality. In Proceedings of the 3rd International Workshop on Multimedia Alternate Realities, AltMM’18, pages 15–20. ACM, 2018.
[46] M. Levoy and P. Hanrahan. Light field rendering. In Proc. of ACM International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’96), pages 31–42, New Orleans, USA, August 1996.
[47] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz. Light field microscopy. ACM Trans. Graph., 25(3):924–934, July 2006.
[48] K. M¨uller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T. Wiegand. View synthesis for advanced 3d video systems. EURASIP Journal on Image and Video Processing, 2008(1), Feb. 2009.
[49] J. Moss, J. Scisco, and E. Muth. Simulator sickness during head mounted display (hmd) of real world video captured scenes. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 52(19):1631–1634, September 2008.
[50] R. Ng, M. Levoy, M. Br´edif, G. Duval, M. Horowitz, and P. Hanrahan. Light field photography with a hand-held plenoptic camera. Stanford Tech Report CTSR 2005-02, 2005.
[51] S. Ohl. Tele-immersion concepts. IEEE Transactions on Visualization and Computer Graphics, 24(10):2827–2842, Oct. 2018.
[52] N. Padmanaban, R. Konrad, E. A. Cooper, and G. Wetzstein. Optimizing vr for all users through adaptive focus displays. In Proc. of ACM International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’17) Talks, pages 77:1–77:2, Los Angeles, USA, July 2017.
[53] B. Ray, J. Jung, and M. Larabi. On the possibility to achieve 6-dof for 360 video using divergent multi-view content. In 2018 26th European Signal Processing Conference (EUSIPCO), pages 211–215, Sept. 2018.
[54] Z. M. Research. Virtual Reality (VR) market by hardware and software for (consumer, commercial, enterprise, medical, aerospace and defense, automotive, energy and others): Global industry perspective, comprehensive analysis and forecast, 2016–2022. https://www.zionmarketresearch.com/report/virtual-reality-market, 2017. Accessed August 2019.
[55] M. Shirer and S. Murray. IDC Sees the Dawn of the DX Economy and the Rise of the Digital-Native Enterprise. https://www.businesswire.com/news/home/20161101005193/en/IDC-Sees-Dawn-DX-Economy-Rise-Digital-Native, 2016. Accessed April 2018.
[56] A. Smolic, K. Mueller, P. Merkle, C. Fehn, P. Kauff, P. Eisert, and T. Wiegand. 3d video and free viewpoint video - technologies, applications and mpeg standards. In 2006 IEEE International Conference on Multimedia and Expo, pages 2161–2164, July 2006.
[57] M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi. Depth from combining defocus and correspondence using light-field cameras. In 2013 IEEE International Conference on Computer Vision, pages 673–680, Dec 2013.
[58] D. Tian, P. Lai, P. Lopez, and C. Gomila. View synthesis techniques for 3d video. In Applications of Digital Image Processing XXXII, volume 7443. International Society for Optics and Photonics, Sept. 2009.
[59] J. Unger, A. Wenger, T. Hawkins, A. Gardner, and P. Debevec. Capturing and rendering with incident light fields. In Proceedings of the 14th Eurographics Workshop on Rendering, pages 141–149, 2003.
[60] V. Vazirani. Approximation algorithms. Springer, Berlin New York, 2001.
[61] K. Venkataraman, D. Lelescu, J. Duparr´e, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar. Picam: An ultra-thin high performance monolithic camera array. ACM Trans. Graph., 32(6):166:1–166:13, Nov. 2013.
[62] T. Wang, J. Zhu, N. K. Kalantari, A. A. Efros, and R. Ramamoorthi. Light field video capture using a learning-based hybrid imaging system. ACM Trans. Graph., 36(4):133:1–133:13, July 2017.
[63] X. Wang, L. Chen, S. Zhao, and S. Lei. From OMAF for 3DoF VR to MPEGI Media Format for 3DoF+, Windowed 6DoF and 6DoF VR. International Organization for Standardization Meeting Document ISO/IEC JTC1/SC29/WG11 MPEG/M41197, 2017. Meeting held at Torino, Italy.
[64] S. Wanner and B. Goldluecke. Variational light field analysis for disparity estimation and super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3):606–619, March 2014.
[65] B. Wilburn, N. Joshi, V. Vaish, E. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy. High performance imaging using large camera arrays. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 765–776. ACM, 2005.
[66] G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu. Light field image processing: An overview. IEEE Journal of Selected Topics in Signal Processing, 11(7):926–954, Oct 2017.
[67] J. C. Yang, M. Everett, C. Buehler, and L. McMillan. A real-time distributed light field camera. In Proceedings of the 13th Eurographics Workshop on Rendering, EGRW ’02, pages 77–86, 2002.
[68] T. Yang, Y. Zhang, J. Yu, J. Li, W. Ma, X. Tong, R. Yu, and L. Ran. All-in-focus synthetic aperture imaging. In Computer Vision – ECCV 2014, pages 1–15, 2014.
[69] Z. Yu, X. Guo, H. Ling, A. Lumsdaine, and J. Yu. Line assisted light field triangulation and stereo matching. In 2013 IEEE International Conference on Computer Vision, pages 2792–2799, Dec 2013.
[70] K. Y¨ucer, A. Sorkine-Hornung, O. Wang, and O. Sorkine-Hornung. Efficient 3d object segmentation from densely sampled light fields with applications to 3d reconstruction. ACM Trans. Graph., 35(3):22:1–22:15, Mar. 2016.
[71] M. Zink, R. Sitaraman, and K. Nahrstedt. Scalable 360 video stream delivery: Challenges, solutions, and opportunities. Proceedings of the IEEE, pages 1–12, 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *