|
[1] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforcement learning”, Internation Conference in Machine Learning, 2004. [2] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from observation: Learning to imitate behaviors from raw video via context translation”, Computing Research Repository(CoRR), 2017. [3] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, Sergey Levine, “Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation”, International Conference on Robotics and Automation, 2018 [4] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor policies”, J. Mach. Learn. Res., vol. 17, no. 1, 2016. [5] A. Edwards, C. Isbell, and A. Takanishi, “Perceptual reward functions”, arXiv preprint arXiv: 1608.03824, 2016. [6] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning”, Internation Conference in Machine Learning, 2000. [7] B. C. Stadie, P. Abbeel, and I. Sutskever, “Third-person imitation learning”, International Conference on Learning Representations, 2017. [8] J. Ho and S. Ermon, “Generative adversarial imitation learning”, Advances in Neural Information Processing Systems, 2016. [9] P. Sermanet, K. Xu, and S. Levine, “Unsupervised perceptual rewards for imitation learning”, Robotics: Science and Systems, 2017. [10] P. Sermanet, C. Lynch, J. Hsu, and S. Levine, “Time-contrastive networks: Self-supervised learning from multi-view observation”, arXiv preprint arXiv:1704.06888, 2017. [11] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learning”, Advances in Neural Information Processing Systems, 2017. [12] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, Alexey Dosovitskiy, “End-to-end Driving via Conditional Imitation Learning”, International Conference on Robotics and Automation, 2018 [13] Mehdi Mirza, Simon Osindero, “Conditional Generative Adversarial Nets”, arXiv preprint arXiv:1411.1784, 2014 [14] Pierre Sermanet, Kelvin Xu, Sergey Levine, Unsupervised Perceptual Rewards for Imitation Learning, arXiv preprint arXiv:1612.06699, 2017 [15] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvunakool, János Kramár, Raia Hadsell, Nando de Freitas, Nicolas Heess, “Reinforcement and Imitation Learning for Diverse Visuomotor Skills”, Robotics: Science and Systems, 2018 [16] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, Sergey Levine, “One Shot Visual Imitation Learning via Meta-Learning”, Conference on Robot Learning, 2017 [17] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, Pieter Abbeel, “Deep imitation learning for complex manipulation tasks from virtual reality teleoperation”, International Conference on Robotics and Automation, 2018 [18] B. C. Stadie, P. Abbeel, and I. Sutskever, “Third-person imitation learning”, International Conference on Learning Representations, 2017. [19] Stephen James, Andrew J. Davison, Edward Johns, “Transferring End-to-End Visuomotor Control from Simulation to RealWorld for a Multi-Stage Task”, Conference on Robot Learning, 2017 [20] N. D. Ratliff, J. A. Bagnell, and M. Zinkevich, “Maximum margin planning”, International Conference in Machine Learning, 2006. [21] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learning,” in Proceedings of the 20th International Joint Conference on Artificial Intelligence, 2007 [22] He, K., Zhang, X., Ren, S., Sun, J.,”Deep residual learning for image recognition”, Computer Vision and Pattern Recognition, 2016 [23] Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L, “Densely connected convolutional networks”, arXiv preprint arXiv:1608.06993, 2016 [24] Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al., “Google’s neural machine translation system: Bridging the gap between human and machine translation”, arXiv preprint arXiv:1609.08144, 2016 [25] Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong, V., Paulus, R., Socher, R., “Ask me anything: Dynamic memory networks for natural language processing”, The Central Iowa Metro League, 2016 [26] Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case,C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., et al., “Deep speech 2: End-toend speech recognition in english and mandarin”, The Central Iowa Metro League (CIML), 2016 [27] Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K., “Wavenet: A generative model for raw audio”, arXiv preprint arXiv:1609.03499, 2016 [28] Diederik P. Kingma, Jimmy Ba, Adam, “A Method for Stochastic Optimization”, International Conference on Learning Representations, 2015 [29] Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey, “Maximum entropy inverse reinforcement learning”, Association for the Advancement of Artificial Intelligence (AAAI), 2008 [30] Faraz Torabi1, Garrett Warnell2, Peter Stone1, “Behavioral Cloning from Observation”, International Joint Conference on Artificial Intelligence, 2018 [31] Bain and Sommut, Michael Bain and Claude Sommut, “A framework for behavioural claning”, Machine Intelligence 15, 15:103, 1999 [32] Grigory Antipov,Moez Baccouche, at al., “Face aging with conditional generative adversarial networks”, International Conference on Image Processing, 2017 [33] Fang Zhao, Jian Zhao,Shuicheng Yan, and Jiashi Feng, “Dynamic Conditional Networks for Few-Shot Learning”, European Conference on Computer Vision (ECCV), 2018 [34] Grigory Antipov, Moez Baccouche, Jean-Luc Dugelay, “Face Aging with Conditional Generative Adversarial Networks”, International Conference on Image Processing, 2017 [35] Jingkuan Song, Jingqiu Zhang, Lianli Gao, Xianglong Liu, Heng Tao Shen, “Dual Conditional GANs for Face Aging and Rejuvenation”, International Joint Conference on Artificial Intelligence(IJCAI), 2018 [36] Anastasia Borovykh, Sander Bohte, Cornelis W. Oosterlee, “Conditional time series forecasting with convolutional neural networks”, arXiv preprint arXiv:1703.04691v1, 2018 [37] Yiming Ding, Carlos Florensa, Mariano Phielipp, Pieter Abbeel,“Goal-conditioned Imitation Learning”, International Conference in Machine Learning, 2019 [38] Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio Savarese, Mrinal Kalakrishnan,“Multi-Task Domain Adaptation for Deep Learning of Instance Grasping from Simulation”, International Conference on Robotics and Automation, 2018 [39] J. R. Cook and L. A. Stefanski ,“Simulation-Extrapolation Estimation in Parametric Measurement Error Models”, Journal of the American Statistical Association Vol. 89, No. 428, pp. 1314-1328, 1995
|