|
[1]Bao,Y.,Peng,Y.,andWu,C. Deeplearning-basedjobplacementindistributedmachine learning clusters. InIEEE INFOCOM 2019 - IEEE Conference onComputer Communications(April 2019), pp. 505–513.[2]Barsanti, L., and Sodan, A. C. Adaptive job scheduling via predictive job re-sourceallocation.InJobSchedulingStrategiesforParallelProcessing(Berlin,Heidelberg, 2007), E. Frachtenberg and U. Schwiegelshohn, Eds., SpringerBerlin Heidelberg, pp. 115–140.[3]Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and Wilkes, J. Borg,omega, and kubernetes.ACM Queue 14(2016), 70–93.[4]Chen, L., Lingys, J., Chen, K., and Liu, F. Auto: Scaling deep reinforcementlearning for datacenter-scale automatic traffic optimization. InProceedings ofthe 2018 Conference of the ACM Special Interest Group on Data Communi-cation(New York, NY, USA, 2018), SIGCOMM ’18, ACM, pp. 191–205.[5]Cirne, W., and Berman, F. When the herd is smart: Aggregate behavior inthe selection of job request.IEEE Trans. Parallel Distrib. Syst. 14(2003),181–192.[6]Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. Benchmark-ing deep reinforcement learning for continuous control. InInternational Con-ference on Machine Learning(2016), pp. 1329–1338.[7]Eager, D. L., Zahorjan, J., and Lazowska, E. D. Speedup versus efficiencyin parallel systems.IEEE Transactions on Computers 38, 3 (March 1989),408–423.[8]Hagan, M. T., Demuth, H. B., and Beale, M.Neural Network Design. PWSPublishing Co., Boston, MA, USA, 1996.[9]Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz,R., Shenker, S., and Stoica, I. Mesos: A Platform for Fine-grained ResourceSharing in the Data Center. InProceedings of the 8th USENIX Conference onNSDI(2011), pp. 295–308.[10]Jain, N., Bhatele, A., Robson, M. P., Gamblin, T., and Kale, L. V. Predictingapplicationperformanceusingsupervisedlearningoncommunicationfeatures.InSC ’13: Proceedings of the International Conference on High PerformanceComputing, Networking, Storage and Analysis(Nov 2013), pp. 1–12. [11]John Schulman, Filip Wolski, P. D. A. R., and Klimov, O. Proximal policyoptimization algorithms, 2017.[12]Mao, H., Alizadeh, M., Menache, I., and Kandula, S. Resource managementwith deep reinforcement learning. InProceedings of the 15th ACM Workshopon Hot Topics in Networks(2016), ACM, pp. 50–56.[13]Sergeev,A.,andBalso,M.D. Horovod: fastandeasydistributeddeeplearningin TensorFlow.arXiv preprint arXiv:1802.05799(2018).[14]Shi, S., Wang, Q., and Chu, X. Performance modeling and evalua-tion of distributed deep learning frameworks on gpus. In2018 IEEE16th Intl Conf on Dependable, Autonomic and Secure Computing, 16thIntl Conf on Pervasive Intelligence and Computing, 4th Intl Conf onBig Data Intelligence and Computing and Cyber Science and TechnologyCongress(DASC/PiCom/DataCom/CyberSciTech)(Aug 2018), pp. 949–957.[15]Silver,D.,Huang,A.,Maddison,C.J.,Guez,A.,Sifre,L.,VanDenDriessche,G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.Mastering the game of go with deep neural networks and tree search.nature529, 7587 (2016), 484.[16]Sutton,R.S.,andBarto,A.G.Introduction to ReinforcementLearning,1sted.MIT Press, Cambridge, MA, USA, 1998.[17]Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. Policy gradientmethods for reinforcement learning with function approximation. InProceed-ings of the 12th International Conference on Neural Information ProcessingSystems(Cambridge, MA, USA, 1999), NIPS’99, MIT Press, pp. 1057–1063.[18]Volodymyr Mnih, Koray Kavukcuoglu, D. S. A. G. I. A. D. W. M. R. Playingatari with deep reinforcement learning, 2013.[19]Volodymyr Mnih, Adrià Puigdomènech Badia, M. M. A. G. T. P. L. T. H. D.S. K. K. Asynchronous methods for deep reinforcement learning.[20]Wajahat, M., Gandhi, A., Karve, A., and Kochut, A. Using machine learningfor black-box autoscaling. In2016 Seventh International Green and Sustain-able Computing Conference (IGSC)(Nov 2016), pp. 1–8.[21]Wang, Z., Gwon, C., Oates, T., and Iezzi, A. Automated cloud provisioningon AWS using deep reinforcement learning.CoRR abs/1709.04305(2017).[22]Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Fre-itas, N. Dueling network architectures for deep reinforcement learning.arXivpreprint arXiv:1511.06581(2015).[23]Yigitbasi, N., Willke, T. L., Liao, G., and Epema, D. Towards machinelearning-based auto-tuning of mapreduce. In2013 IEEE 21st InternationalSymposium on Modelling, Analysis and Simulation of Computer and Telecom-munication Systems(Aug 2013), pp. 11–20. [24]Yoo, A. B., Jette, M. A., and Grondona, M. Slurm: Simple linux utility forresource management. InJob Scheduling Strategies for Parallel Processing(Berlin, Heidelberg, 2003), D. Feitelson, L. Rudolph, and U. Schwiegelshohn,Eds., Springer Berlin Heidelberg, pp. 44–60.[25]Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., and Funkhouser, T.Learning synergies between pushing and grasping with self-supervised deepreinforcement learning.arXiv preprint arXiv:1803.09956(2018).
|