帳號:guest(18.117.100.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):甘尼瑟
作者(外文):Kumar, Ganisetti Vijay
論文名稱(中文):電動車同步磁阻馬達驅動系統之開發及其與電網/微電網之互聯操作
論文名稱(外文):DEVELOPMENT OF AN ELECTRIC VEHICLE SYNCHRONOUS RELUCTANCE MOTOR DRIVE AND ITS INTERCONNECTED OPERATIONS TO GRID AND MICROGRID
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):徐國鎧
劉添華
黃昌圳
鐘太郎
吳財福
口試委員(外文):Dr. Xu, Guo-Kai
Dr. Liu, Tian-Hua
Dr. Huang, Chang-Chun
Dr. Jong, Tai-Lang
Dr. Wu, Tsai-Fu
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061891
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:143
中文關鍵詞:同步磁阻馬達電動車蓄電池換相調整損失最小化電流控制速度控制再生煞車無位置感測控制高頻信號注入電網至車輛車輛至電網微電網至車輛車輛至微電網
外文關鍵詞:Synchronous reluctance motorelectric vehiclebatterycommutation tuningloss minimizationcurrent controlspeed controlregenerative brakingposition sensorless controlhigh-frequency signal injectiongrid-to-vehiclevehicle-to-gridgrid-to-microgridmicrogrid-to-grid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發一電動車同步磁阻馬達驅動系統,並從事其與電網及微電網間之雙向操控。首先,建立一標準同步磁阻馬達驅動系統,其考慮槽齒效應之電流控制機構及速度控制機構均妥以設計。同時以所提適應換相機構,自動調整換相時刻,獲得馬達總損失最小化。為增進廣速度範圍之驅動性能,以一單臂雙向升降壓直流/直流轉換器作為蓄電池及馬達變頻器間之介面,建立與速度關聯之直流鏈電壓。馬達再生煞車回收之電能,亦可成功回存至蓄電池。
接者,建立一具廣速度及負載範圍之無位置感測電動車同步磁阻馬達驅動系統。為解決既有方法所面臨之關鍵問題,先探究在直軸及交軸注入下,注入電流與槽齒諧波電流準位之影響。再據以提出交軸高頻注入機構,考慮與速度及/或負載關聯之槽齒漣波電流,採變頻注入機制。感測之直軸電流,經處理獲得穩定且準確之估測轉子位置。此外,亦加入強健速度及位置估測控制,增強無位置感測馬達之控制性能。
最後,本論文從事所建馬達驅動系統之車輛至電網及車輛至微電網之雙向操控。於閒置狀態,僅需外加低通濾波器,應用既有之介面轉換器及馬達變頻器,即可達成所安排之操作。車載蓄電池可由電網充電,而具良好入電品質。反之於車輛至電網模式,蓄電池可回送功率至電網。三相及單相聯網操控皆可,甚至在單相下,馬達之線圈電感可取代外加電感。相同電路組成,亦可從事微電網至車輛及車輛至微電網操作,於此以一風力開關式磁阻發電機為主之微電網為之。藉所安排之控制,可成功執行電動車於微電網之移動式儲能應用,有效利用再生能源。
This dissertation presents the development of an electric vehicle (EV) synchronous reluctance motor (SynRM) drive and its bidirectional operations to grid and microgrid. First, a standard synchronous reluctance motor drive is established with proper current control considering inherent slotting effects and speed control. An adaptive commutation scheme (ACS) is developed to automatically set the commutation instant for achieving the motor total loss minimization. To enhance the driving performance over wide speed range, a bi-directional one-leg boost-buck DC/DC converter is used as an interface between battery and motor-drive inverter to establish the speed dependent varied DC-link voltage. The regenerative braking energy can also be successfully recovered to the battery.
Second, a position sensorless EV SynRM drive having wide speed and load ranges is developed. To solve the key problems encountered by existing approaches, the comparative effects of biased injected current and slotting harmonic current levels for d- and q-axis injections are explored. Then the high-frequency injection (HFI) scheme based on q-axis injection is proposed. The changed-frequency injection is adopted considering the effects of speed/load dependent slotting ripple current. The detected d-axis current is processed to yield stable and accurate estimated rotor position. The robust observed speed and position controllers are added to enhance the sensorless control performance.
Finally, this dissertation presents the vehicle-to-grid (V2G) and vehicle-to-microgrid (V2M) bidirectional operations of the developed EV SynRM drive. In idle condition, the embedded interface converter and inverter of motor drive are arranged to perform the G2V/V2G operations. Only the low-pass filters are needed to add externally. Through proper controls, the on-board battery can be charged from mains in G2V mode with good line drawn power quality. Conversely in V2G operation, the battery can send power back to the utility grid. Three-phase and single-phase grid connected operations are all applicable. For the single-phase case, the armature windings are further utilized to replace the externally added inductor. Moreover, through the same schematics, the M2V/V2M operations can also be conducted. A wind switched-reluctance generator (SRG) based microgrid is employed here. The EV movable energy storage application to microgrid is successfully operated via the arranged controls to effectively utilize the renewable sources.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xv
LIST OF ABBREVIATIONS xvi
LIST OF SYMBOLS xix
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BASICS OF ELECTRIC VEHICLE MOTOR DRIVES 7
2.1 Introduction 7
2.2 Electric Vehicle Classifications and Power Control Units 7
2.3 Movable Stored Energy Operation of Electric Vehicle 9
2.4 Interface Converters 9
A. DC/DC Converters 9
B. Switch-mode Rectifier 10
C. Inverters 13
2.5 Synchronous Machines 14
A. Stator 14
B. Rotor 14
2.6 Synchronous Reluctance Motor 16
A. Voltage Equations 16
B. Phasor Equations 18
C. Torque Equations 19
2.7 Generator Operation of a SynRM 19
2.8 Key Issues of SynRM Drive 20
2.9 Some Existing EV Chargers 21
2.10 Digital Control Practical Considerations 23
CHAPTER 3 STANDARD ELECTRIC VEHICLE SYNCHRONOUS RELUCTANCE MOTOR DRIVE 26
3.1 Introduction 26
3.2 System Configuration and Problem Statements 26
3.3 Bidirectional Battery Interface Converter 27
A. Power Circuit 27
B. Control Scheme 28
3.4 EV SynRM Drive 33
A. System Components 33
B. Physical Modeling Considering Core Losses 33
C. Estimation of Key Parameters 34
D. The Proposed Adaptive Commutation Scheme 40
E. Control Schemes 40
3.5 Efficiency Evaluation 45
A. Energy Conversion Efficiency Assessment 45
B. Effectiveness of Commutation Shift 47
C. Reversible Operation 49
D. Regenerative Braking 49
E. Programmed Speed Patterns 50
CHAPTER 4 STANDARD ELECTRIC VEHICLE SYNCHRONOUS RELUCTANCE MOTOR DRIVE WITH VARIED DC-LINK VOLTAGE 53
4.1 Introduction 53
4.2 System Configuration 53
4.3 Coordinated Outer-loop Control Schemes 55
A. Speed Control Scheme of SynRM Drive 55
B. Voltage-loop Control Scheme of Battery Interface
Converter 59
4.4 Whole EV SynRM Drive Performance Evaluation 61
A. DC-link Voltage Setting 61
B. Efficiency Assessment 61
C. Energy Consumption Characteristics 64
CHAPTER 5 POSITION SENSORLESS ELECTRIC VEHICLE SYNCHRONOUS RELUCTANCE MOTOR DRIVE 67
5.1 Introduction 67
5.2 Key Attributes Determination for Single-axis HFI Scheme 67
A. D-axis Injection 69
B. Q-axis Injection 70
C. Experimental Verification 71
5.3 Slotting Effects of HFI Operation 76
A. Current Harmonics Caused by Slotting Effects 76
B. Spectral Characteristics 76
C. Injected Axis Choice for Pulsating Voltage Signal Injection 76
5.4 The Developed HFI Position Sensorless SynRM Drive 77
A. System Configuration and Operation Principle 77
B. System Parameters 79
C. Experimental Evaluation 80
5.5 Operation Characteristics of the Established HFI Position Sensorless SynRM Drive 85
A. Starting Characteristics 85
B. Steady-state Characteristics 86
C. Speed Dynamic Responses 88
D. Acceleration/Deceleration and Reversible Operation 89
E. Regenerative Braking 91
F. Programmed Speed Pattern 92
G. Efficiency Evaluation 94
CHAPTER 6 VEHICLE-TO-GRID AND VEHICLE-TO-MICROGRID BIDIRECTIONAL OPERATIONS 96
6.1 Introduction 96
6.2 System Configuration 96
6.3 Development of a Three-phase Full-bridge SMR 96
A. System Configuration 96
B. Circuit Operation 99
C. Design of Circuit Components 101
D. Control Schemes 102
E. Experimental Results 107
6.4 Three-phase G2V/V2G Operation 111
A. Grid-to-vehicle Charging Operation 111
B. Vehicle-to-grid Discharging Operation 111
6.5 Single-phase G2V/V2G Operation using SMR with External Inductor 115
A. Power Circuit 115
B. Control Schemes 116
C. Measured Results 117
D. G2V/V2G Operations 118
6.6 Single-phase G2V/V2G Operation using SMR with Integrated Inductor 121
A. System Configuration 121
B. Control Schemes 122
C. Measured Results 122
D. G2V/V2G Operations 124
6.7 EV and Microgrid Inter-connected Operations 127
A. Microgrid-to-vehicle Operation 129
B. Vehicle-to-microgrid Operation 132
CHAPTER 7 CONCLUSIONS 134
REFERENCES 136
A. Electric Vehicles
[1] Shumei Cui, Shouliang Han, and C. C. Chan, “Overview of multi-machine drive systems for electric and hybrid electric vehicles,” in Proc. IEEE ITEC Asia-Pacific, 2014, pp. 1-6.
[2] G. Wu, K. Boriboonsomsin, and M. J. Barth, “Development and evaluation of an intelligent energy-management strategy for plug-in hybrid electric vehicles,” IEEE Trans. Syst., vol. 15, no. 3, pp. 1091-1100, 2014.
[3] C. C. Chan, A. Bouscayrol, and K. Chen “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
[4] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[5] T. Alagarsamy and B. Moulik, “A review on optimal design of hybrid electric vehicles and electric vehicles,” in Proc. IEEE I2CT, 2018, pp. 1-5.
[6] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879.
[7] D. Cabezuelo, E. Ibarra, E. Planas, I. Kortabarria and J. I. Garate, “Rare-earth free EV and HEV motor drives: state of the art,” in Proc. PCIM Europe, 2018, pp. 1376-1383.
[8] I. Boldea, L. N. Tutelea, L. Parsa and D. Dorrell, “Automotive electric propulsion systems with reduced or no permanent magnets: an overview,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5696-5711, 2014.
[9] S. Estenlund, M. Alakula and A. Reinap, “PM-less machine topologies for EV traction: A literature review,” in Proc. IEEE ESARS-ITEC, 2016, pp. 1-6.
[10] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” in Proc. IEEE IAS, 1999, vol. 2, pp. 840-845.
[11] S. M. de Pancorbo, G. Ugalde, J. Poza and A. Egea, “Comparative study between induction motor and synchronous reluctance motor for electrical railway traction applications,” in Proc. IEEE EDPC, 2015, pp. 1-5.
[12] F. Oliveira and A. Ukil, “Comparative performance analysis of induction and synchronous reluctance motors in chiller systems for energy efficient buildings,” IEEE Trans, Ind. Inform., vol. 15, no. 8, pp. 4384-4393, 2019.
[13] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[14] A. Siadatan, M. K. Adab, and H. Kashian, “Compare motors of Toyota Prius and synchronous reluctance for using in electric vehicle and hybrid electric vehicle,” in Proc. IEEE EPEC, 2017, pp. 1-6.
[15] M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” IEEE Ind. Appl., vol. 51, no. 4, pp. 3030-3040, Jul./Aug. 2015.
[16] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello and E. Fornasiero, “Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4762-4769, 2016.
[17] E. Trancho, E. Ibarra, A. Arias, I. Kortabarria, J. Jurgens, L. Marengo, A. Fricassè, and J. V. Gragger, “PM-assisted synchronous reluctance machine flux weakening control for EV and HEV applications,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 2986-2995, Apr. 2018.
B. Synchronous Reluctance Motor
[18] T. A. Lipo, “Synchronous reluctance machine- A viable alternative for AC drive,” Electric Machine & Power System, vol. 19, no. 6, pp. 659-671, 1991.
[19] P. Krause, O. Wasynczuk, S. Sudhoff and S. Pekarek, Analysis of electric machinery and drive systems, New Jersey, John Wiley & Sons, 2013.
[20] M. D. Nardo, G. L. Calzo, M. Galea and C. Gerada, “Design optimization of a high-speed synchronous reluctance machine,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 233-243, 2018.
[21] M. Palmieri, M. Perta and F. Cupertino, “Design of a 50.000-r/min synchronous reluctance machine for an aeronautic diesel engine compressor,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3831-3838, 2016.
[22] K. Lang, A. Muetze, R. Bauer and W. Rossegger, “Design of PM-free AC machine-based actuators for elevated-temperature environments,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2241-2252, 2016.
[23] Y. H. Kim and J. H. Lee, “Optimum design of ALA-SynRM for direct drive electric valve actuator,” IEEE Trans. Magnetics, vol. 53, no. 4, 8200804, 2017.
[24] S. Taghavi and P. PillayA, “Sizing methodology of the synchronous reluctance motor for traction applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 329-340, 2014.
[25] F. N. Jurca, M. Ruba and C. Marţiş, “Design and control of synchronous reluctances motors for electric traction vehicle,” in Proc. IEEE SPEEDAM, 2016, pp. 1144-1148.
[26] D. B. Herrera, E. Galvan and J. M. Carrasco, “Synchronous reluctance motor design based EV powertrain with inverter integrated with redundant topology,” in Proc. IEEE IECON, 2015, pp. 1-6.
[27] J. E. Miller, A. Hutton, C. Cossar and D. A. Staton, “Design of a synchronous reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 27, no. 4, pp. 741-749, 1991
[28] H. C. Liu and J. Lee, “Optimum design of an IE4 line-start synchronous reluctance motor considering manufacturing process loss effect,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3104-3114, 2018.
[29] A. Vagati, M. Pastorelli, G. Francheschini and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758-765, 1998.
[30] T. Matsuo and T. A. Lipo, “Rotor design optimization of synchronous reluctance machine,” IEEE Trans. Energy Convers., vol. 9, no. 2, pp. 359-365, 1994.
[31] W. T. Villet and M. J. Kamper, “Variable-gear EV reluctance synchronous motor drives- an evaluation of rotor structures for position-sensorless control,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5732-5740, 2014.
[32] Z. Qu and M. Hinkkanen, “Loss-minimizing control of synchronous reluctance motors- A review,” in Proc. IEEE ICIT, 2013, pp. 350-355.
[33] H. F. Hofmann, S. R. Sanders and A. EL-Antably, “Stator-flux oriented vector control of synchronous reluctance machines with maximized efficiency,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1066-1072, 2004.
[34] S. Yamamoto, H. Hirahara, J. B. Adawey, T. Ara and K. Matsuse, “Maximum efficiency drives of synchronous reluctance motors by novel loss minimization controller with inductance estimator,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2543-2551, 2013.
[35] M. N. Ibrahim, P. Sergeant and E. M. Rashad, “Relevance of including saturation and position dependence in the inductances for accurate dynamic modeling and control of SynRMs,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 151-160, 2017.
[36] A. Varatharajan, S. Cruz, H. Hadla and·F. Briz, “Predictive torque control of SynRM drives with online MTPA trajectory tracking and inductances estimation,” in Proc. IEEE IEMDC, 2017, pp. 1-7.
[37] N. Bedetti, S. Calligaro and R. Petrella, “Self-adaptation of MTPA tracking controller for IPMSM and SynRM drives based on on-line estimation of loop gain,” in Proc. IEEE ECCE, 2017, pp. 1917-1924.
[38] K. W. Hu, C. F. Lee, Y. T. Su and C. M. Liaw, “On a SynRM speed drive with intuitive commutation tuning,” in Proc. IEEE ICPE ECCE-Asia, 2015, pp. 1623-1630.
[39] H. Hadla and S. Cruz, “Predictive stator flux and load angle control of synchronous reluctance motor drives operating in a wide speed range,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6950-6959, 2017.
[40] R. R. Moghaddam, “Fundamental study on rotor eddy current losses in high frequency machines due to current harmonics,” in Proc. IEEE ECCE, 2015, pp. 2750-2537.
[41] S. Yamamoto and T. Ara, “Determination of direct and quadrature axis inductances of synchronous reluctance motors with allowance for cross saturation,” Electrical Engineering in Japan, vol. 149, no. 4, pp. 52-59, 2004.
[42] K. Yahia, D. Matos, J. O. Estima and A. J. Marques Cardoso, “Modeling synchronous reluctance motors including saturation, iron losses and mechanical losses,” in Proc. IEEE SPEEDAM 2014, pp. 601-606.
[43] V. Rallabandi, N. Taran, D. M. Ionel and P. Zhou, “Inductance testing for IPM synchronous machines according to the new IEEE Std 1812 and typical laboratory practices,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2649-2659, 2019.
[44] W. Guo, Z. Zhao, and Y. Zhang, “Analysis and experimental study of slot effect in synchronous reluctance permanent magnet motors,” in Proc. IEEE IPEMC, 2006, pp. 1-6.
[45] Y. Inoue, S. Morimoto and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115-121, 2011.
[46] C. M. Hackl, M. J. Kamper, J. Kullick, and J. Mitchell, “Current control of reluctance synchronous machines with online adjustment of the controller parameters,” in Proc. IEEE ISIE, 2016, pp. 153-160.
[47] D. D. Rù, M. Morandin, S. Bolognani and M. Castiello, “Model predictive hysteresis current control for wide speed operation of a synchronous reluctance machine drive,” in Proc. IEEE IECON, 2016, pp. 2845-2850.
[48] A. Guagnano, G. Rizzello, F. Cupertino and D. Naso, “Robust control of high-speed synchronous reluctance machines,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3990-4000, 2016.
[49] R. Antonello, L. Ortombina, F. Tinazzi and M. Zigliotto, “Advanced current control of synchronous reluctance motors,” in Proc. IEEE PEDS, 2017, pp.1037-1042.
[50] H. Chaoui, M. Khayamy, O. Okoye and H. Gualous, “Simplified speed control of permanent magnet synchronous motors using genetic algorithms,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3563-3574, 2019.
[51] E. Daryabeigi, A. Mirzaei, H. A. Zarchi and S. Vaez-Zadeh, “Enhanced emotional and speed deviation control of synchronous reluctance motor drives,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 604-612, 2019.
[52] S. Wiedemann, S. Hall, R. M. Kennel and M. Alakula, “Dynamic testing characterization of a synchronous reluctance machine,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1370-1378, 2018.
[53] S. S. Maroufian and P. Pillay, “Torque characterization of a synchronous reluctance machine using an analytical model,” IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 506-516, 2018.
[54] S. Bolognani, L. Peretti and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20-28, 2011.
[55] E. Daryabeigi, A. Mirzaei, H. A. Zarchi and S. Vaez-Zadeh, “Deviation control in comparison with DTC and FOC for SynRM drives,” in Proc. IEEE PEDSTC, 2019, pp. 713-717.
[56] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157-2166, 2015.
[57] H. Mahmoud and N. Bianchi, “Nonlinear analytical model of eccentric synchronous reluctance machines considering iron saturation and slotting effect,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2007-2015, 2017.
C. DC-DC converters
[58] M. Cacciato, F. Caricchi, F. Giuhlii, and E. Santini, “A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications,” in Proc. IEEE IAS, 2004, vol. 2, no. 2, pp.1127-1133.
[59] M. A. Khan, A. Ahmed, I. Hussain, Y. Sozer and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
[60] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[61] A. Hintz, U. R. Prasanna and K. Rajashekara, “Experimental validation of a three-port integrated topology to interface electric vehicles and renewables with the electrical grid,” IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2364–2374, 2018.
[62] J. O. Estima and A. J. Marques Cardoso, “Efficiency analysis of drive train topologies applied to electric/hybrid vehicles,” IEEE Trans. Veh. Technol., vol. 61, no. 3, pp. 1021-1031, 2012.
[63] K. K. Prabhakar, M. Ramesh, A. Dalal, C. U. Reddy, A. K. Singh,and P. Kumar, “Efficiency investigation for electric vehicle powertrain with variable DC-link bus voltage,” in Proc. IEEE IECON, 2016, pp. 1796-1801.
[64] D. Ronanki and S. S. Williamson, “Modular multilevel converters for transportation electrification: challenges and opportunities,” IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 399-407, 2018.
[65] N. Elsayad, H. Moradisizkoohi, and O. A. Mohammed, “Design and implementation of a new transformerless bidirectional DC–DC converter with wide conversion ratios,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7067-7077, 2019.
[66] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[67] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg and B. Lehman, “Step-up DC/DC converters: a comprehensive review of voltage-boosting techniques, topologies, and application,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
[68] M. De Santis, S. Agnelli, F. Patanè, O. Giannini and G. Bella, “Experimental study for the assessment of the measurement uncertainty associated with electric powertrain efficiency using the back-to-back direct method,” Energies, vol. 11, 3536, pp. 1-19, 2018.
D. Sensorless Control
[69] O. Benjakand D. Gerling, “Review of position estimation methods for PMSM drives without a position sensor, part III: Methods based on saliency and signal injection,” in Proc. ICEMS, 2010, pp. 873-878.
[70] S. K. Sul, Y. C. Kwon and Y. Lee, “Sensorless control of IPMSM for last 10 years and next 5 years.” CES Trans. Electrical Machines and Systems, vol. 1, no. 2, pp. 91-99, 2017.
[71] G. Wang, M. Valla, and J. Solsona, “Position sensorless permanent magnet synchronous machine drives - a review,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5830-5842, 2020.
[72] T. Tuovinen, M. Hinkkanen, L. Harnefors and J. Luomi, “Comparison of a reduced-order observer and a full-order observer for sensorless synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1959-1967, 2012.
[73] T. Tuovinen and M. Hinkkanen, “Adaptive full-order observer with high- frequency signal injection for synchronous reluctance motor drives,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 181-189, 2014.
[74] D. -Q. Nguyen, L. Loron and K. Dakhouche, “High-speed sensorless control of a synchronous reluctance motor based on an extended kalman filter,” in Proc. IEEE EPE ECCE, 2015, pp. 1-10.
[75] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1264-1274, 2006.
[76] K. Kato, M. Tomita, M. Hasegawa, S. Doki, S. Okuma and S. Kato, “Position and velocity sensorless control of synchronous reluctance motor at low speed using disturbance observer for high-frequency extended EMF,” in Proc. IEEE IECON, 2011, pp. 1971-1976.
[77] S. Bolognani, L. Ortombina, F. Tinazzi, and M. Zigliotto, “Model sensitivity of fundamental-frequency-based position estimators for sensorless PM and reluctance synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 77-85, 2018.
[78] S. J. Kang, J. M. Kim and S. K. Sul, “Position sensorless control of synchronous reluctance motor using high frequency current injection,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1271-1275, 1999.
[79] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[80] J. H. Jang, J. I. Ha, M. Ohto, K. Idle and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[81] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection- based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[82] H. W. D. Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[83] S. C. Agarlita, I. Boldea and F. Blaabjerg, “High-frequency injection-assisted “active-flux”- based sensorless vector control of reluctance synchronous motors, with experiments from zero speed,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1931-1939, 2012.
[84] A. Yousefi-Talouki, P. Pescetto, G. Pellegrino and I. Boldea, “Combined Active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2447-2457, 2018.
[85] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[86] Y. D. Yoon, S. K. Sul, S. Morimoto and K. Ide, “High bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011.
[87] N. C. Park and S. H. Kim, “Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,” IET Elect. Power Appl., vol. 8, no. 2, pp. 68-75, 2014.
[88] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim and R. S. Yu, “Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 302-312, 2016.
[89] A. Varatharajan and G. Pellegrino, “Sensorless synchronous reluctance motor drives: a general adaptive projective vector approach position estimation,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1495-1504, 2020.
[90] T. Kojima, T. Suzuki, M. Hazeyama, and S. Kayano, “Position sensorless control of synchronous reluctance machines based on magnetic saturation depending on current phase angles,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2171-2719, 2020.
E. Grid-Connected Operations
[91] J. G. Pinto, V. Monteiro, H. Gonçalves, B. Exposto, D. Pedrosa, C. Couto, and J. L. Afonso, “Bidirectional battery charger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technologies,” in Proc. IEEE IECON, 2013, pp. 5934-5939.
[92] B. Kramer, S. Chakraborty, and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
[93] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin, and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012.
[94] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “Grid connected integrated battery chargers in vehicle applications: Review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[95] T. S. Ustun, C. R. Ozansoy and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, 2013.
[96] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, Jul. 2013.
[97] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016.
[98] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157-171, 2018.
[99] D. Das, N. Weise, K. Basu, R. Baranwal, and N. Mohan, “A bidirectional soft-switched DAB-based single-stage three-phase AC-DC converter for V2G application,” IEEE Trans. Transport. Electrific., vol. 5, no. 1, pp. 186-199, 2019.
[100] A. Khaligh and M. D. Antonio, “Global trends in high-power on-board chargers for electric vehicles” IEEE Trans. Veh. Technol., vol. 68, no. 4, 2019.
[101] G. R. Chandra Mouli, J. Schijffelen, M. van den Heuvel, M. Kardolus, and P. Bauer, “A 10 kW solar-powered bidirectional EV charger compatible with Chademo and COMBO,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1082-1098, Feb. 2019.
[102] M. S. Rahman, M. J. Hossain, and J. Lu, “Utilization of parked EV-ESS for power management in a grid-tied hybrid ac/dc microgrid,” Proc. IEEE 2015 Australas. Univ. Power Eng. Conf., pp. 1-6, 2015.
[103] M. Dicorato, G. Forte, M. Trovato, C. B. Muñoz, and G. Coppola, “An integrated DC microgrid solution for electric vehicle fleet management,” IEEE Trans. Ind. Appl., vol. 55, no. 6, Nov./Dec. 2019.
[104] M. Z. Lu, P. H. Jhou, and C. M. Liaw, “Wind switched-reluctance generator based microgrid with integrated plug-in energy support mechanism,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5496-5511, 2021.
F. Switch-mode Rectifiers and Front-end Converters
[105] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single-phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[106] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[107] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[108] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
[109] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[110] S. Kim and F. S. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, 2015.
[111] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
[112] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard charger,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, 2017.
[113] K. Fahem, D. E. Chariag, and L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” in Proc. IEEE GECS, 2017, pp. 1-6.
[114] I. Roasto, A. Rosin, and T. Jalakas, “Multiport interface converter with an energy storage for nanogrids,” IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, pp. 6088-6093, 2018.
G. Others
[115] J. H. Zhuang, “Development of position sensorless synchronous reluctance generator system and its performance enhancement controls,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2018.
(此全文20260715後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *