帳號:guest(18.118.205.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張 義
作者(外文):Chang, Yi
論文名稱(中文):智能城市中在時變延遲和隨機干擾下之隨機多垂直起降無人機網路系統的強健事件觸發編隊追蹤控制
論文名稱(外文):Stochastic Event-Triggered Robust Team Formation Tracking Design of Multi-VTOL-UAV Networked Control System in Smart City under Time-varying Delay and Random Fluctuation
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):許健平
黃志良
吳常熙
口試委員(外文):Sheu, Jang-Ping
Hwang, Chih-Lyang
Wu, Chang-Hsi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061623
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:26
中文關鍵詞:無人機網路系統多智能體系統事件觸發控制架構隨機網路團隊控制系統強健團隊追蹤控制網路模糊控制系統
外文關鍵詞:unmanned aerial vehicle networked systemmulti-agent systemevent-triggered control schemestochastic networked team control systemrobust team tracking controlnetworked T-S fuzzy system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1145
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,垂直起降無人機受到愈來愈多的關注由於它的高機動性不論在軍事還是民用的領域。然而,針對一群無人機的去達到位置和姿態追蹤控制的編隊任務的研究還是相當的少。此外,由於網路控制系統中有限的頻寬以及編隊任務中無人機的數量漸增,能源浪費和資源節省的議題也愈來愈受到重視。再者,無人機在真實智能城市中會受到內部連續Wiener隨機擾動、不連續Poisson隨機擾動,以及來自無線網路的外部干擾和時變延遲。因此一個強健H∞事件觸發virtual structure編隊追蹤控制被提出來解決隨機多垂直起降無人機團隊追蹤控制問題。藉由所提出的事件觸發架構,H∞團隊追蹤性能可以被達到且通訊頻寬的負擔得以減輕。在本篇研究中,事件觸發多無人機動態模型可以被增廣成一個增廣系統並被表示為一個shifted tracking dynamic system。因此H∞事件觸發團隊追蹤問題可以被轉化為Hamilton-Jacobin inequality(HJI)限制下的最佳化問題。然而這是非常難去數值分析的,因此T-S模糊的方法被用來有效的近似非線性多無人機系統藉由一群線性化系統來簡化設計的流程。因此,針對H∞強健事件觸發團隊追蹤控制的HJI限制下最佳化問題可以被轉化為線性矩陣不等式(LMI)限制下最佳化問題並可以用凸優化技巧很容易的解決。最後,給出一個模擬例子用於證明所提出針對多垂直起降無人機系統的強健事件H∞編隊追蹤控制的有效性。
Vertical Take-off and Landing (VTOL) UAV has given rise to interests nowadays due to its high maneuverability no matter in military or civilian field. However, there are still few researches about the formation flight control of a team of UAVs to achieve the desired attitude and position tracking for a formation task. Besides, the energy-waste and resource-saving issues have attracted the growing attention because of the limited networked bandwidth in the networked control system and the increasing number of the UAVs in the formation tasks. Moreover, UAVs will suffer from the intrinsic continuous Wiener, discontinuous Poisson random fluctuation, external disturbances and time-varying delays of wireless network in the real environment of smart city. As the result, a robust H∞ event-triggered virtual structure formation team tracking control is proposed to deal with the stochastic multi-VTOL-UAV team tracking control problem. By the proposed event-triggered control, the H∞ team tracking performance can be achieved and the load of communication bandwidth can be released at the same time. In this study, the event-triggered multi-UAV dynamic models are augmented into an augmented system and the model of event-triggered multi-UAV team tracking formation can be represented by a shifted tracking dynamic system. Therefore, the robust H∞ event-triggered team tracking problem can be transformed to a Hamilton-Jacobin inequality(HJI)-constraint optimization problem. However, it is still difficult to be solved analytically and numerically, so T-S fuzzy techniques are adopted to efficiently approximate the nonlinear multi-UAV system by a set of local linearized networked systems to simplify the design procedure. Thus, the HJI-constraint optimization problem for the H∞ event-triggered robust formation team tracking control can be transformed to the linear matrix inequality(LMI)-constraint optimization problem and can be easily solved by the convex optimization techniques. Finally, a simulation example is given to validate the effectiveness of the proposed event-triggered robust H∞ formation tracking control for the multiple VTOL-UAV system.
摘要------------------------------------------------------i
Abstract-------------------------------------------------ii
致謝-----------------------------------------------------iii
Contents-------------------------------------------------iv
I. INTRODUCTION------------------------------------------ 1
II. SYSTEM DESCRIPTION AND PRILIMINARIES----------------- 4
III. PROBLEM FORMULATION--------------------------------- 8
IV. ROBUST H∞ TEAM TRACKING CONTROL DESIGN OF STOCHASTIC EVENT-TRIGGERED MULTI-UAV NETWORKED CONTROL SYSTEM VIA T-S FUZZY MODEL------------------------------------------------------------ 14
V. H∞ FUZZY EVENT-TRIGGERED TEAM TRACKING CONTROL DESIGN OF STOCHASTIC MULTI-UAV NETWORKED SYSTEM WITH TIME-VARYING DELAY--------------------------------------------------------------- 16
VI. SIMULATION RESULT----------------------------------- 18
VII. CONCLUSION----------------------------------------- 22
VIII. APPENDIX------------------------------------------ 22
References-------------------------------------------- 25

[1] P. Castillo, A. Dzul, and R. Lozano, “Real-time stabilization and tracking of a four-rotor mini rotorcraft,” IEEE Trans. on Control
Sytems Technology, vol. 12, no. 4, pp. 510–516, 2004.
[2] A. Franchi, C. Secchi, M. Ryll, H. Bthoff, and P. R. Giordano, “Shared control: Balancing autonomy and human assistance with a
group of quadrotor UAVs,” IEEE Robotics and Automation Magazine, vol. 19, no. 3, pp. 57–68, 2012.
[3] W. Hao, and B. Xian, “Nonlinear Adaptive Fault-Tolerant Control for a Quadrotor UAV Based on Immersion and Invariance
Methodology.” Nonlinear Dynamics, vol. 90, no. 4, pp. 2813–2826, 2017
[4] P. Pounds, R. Mahony, P. Corke, Modelling and control of a large quadrotor robot. Control Engineering Practice, vol. 18, no. 7, 691-699,
2010
[5] T. Luukkonen, ”Modelling and Control of Quadcopter,” Independent research project in applied mathematics , Espoo: Aalto University,
2011.
[6] T. Bresciani, ”Modelling, Identification and Control of a Quadrotor Helicopter”,Lund University, Department of Automatic Control,
Oct. 2008.
[7] R. Xue, and G. Cai, ”Formation flight control of multi-UAV system with communication constraints. Journal of Aerospace Technology
and Management, vol. 8, no. 2, 203-210, 2016
[8] Y.-Y. Chen, Z.-Z. Wang, Y. Zhang, C.-L. Liu, and Q. Wang, “A geometric extension design for spherical formation tracking control of
second-order agents in unknown spatiotemporal flowfields,” Nonlinear Dynamics, vol. 88, no. 2, pp. 1173–1186, 2017.
[9] J. Lawton, R. Beard, and B. Young, ”A decentralized approach to formation maneuvers,” IEEE Trans. Robotics and Automation, vol.
19, no. 6, pp. 933-941, Dec. 2003.
[10] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, ”Sliding mode formation control for cooperative autonomous mobile robots,”
IEEE Trans. Industrial Electronics vol. 55, no. 11, pp. 3944-3953, Nov. 2008.
[11] P. Ogren, M. Egerstedt, and X. Hu, ”A control Lyapunov function approach to multiagent coordination,” IEEE Trans. Robotics and
Automation , vol. 18, no. 5, pp. 847-851, Oct. 2002.
[12] D. Scharf, F. Hadaegh, S. Ploen, A survey of spacecraft formation flying guidance and control. Part II: Control. Proceedings of the
2004 American Control Conference, 2004.
[13] Q. Zhang, et al. “Distributed Control of Coordinated Path Tracking for Networked Nonholonomic Mobile Vehicles.” IEEE Transactions
on Industrial Informatics, vol. 9, no. 1, pp. 472–484, 2013
[14] O. Saif, I. Fantoni, A. Zavala-Rio, Real-time flocking of multiple-quadrotor system of systems. 2015 10th System of Systems Engineering
Conference (SoSE), pp. 286-291, 2015
[15] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a swarm of agile micro quadrotors.,” Autonomous Robots, vol. 35,
pp. 287–300, 2013.
[16] A. Schollig, F. Augugliaro, S. Lupashin, and R. D’Andrea, “Synchronizing the motion of a quadrocopter to music,” in IEEE International
Conference on Robotics and Automation (ICRA), 2010, Anchorage, Alaska, pp. 3355–3360, May 2010.
[17] Jawhar, I., Mohamed, N., & Al-Jaroodi, J. Networking architectures and protocols for smart city systems. Journal of Internet Services
and Applications, vol. 9, no. 1, pp. 2018
[18] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, I. Jawhar, (2014). UAVs for smart cities: Opportunities and challenges. 2014
International Conference on Unmanned Aircraft Systems (ICUAS).
[19] J. Lunze and D. Lehmann, ”A state-feedback approach to event-based control,” Automatica, vol. 46(1), pp. 211-215, 2010.
[20] D. Lehmann and J. Lunze, ”Event-based output-feedback control,”19th Mediterranean Conference on Control and Automation, pp.982-
987,2011.
[21] D. V. Dimarogonas, E. Frazzoli, (2009). Distributed event-triggered control strategies for multi-agent systems. 2009 47th Annual
Allerton Conference on Communication, Control, and Computing (Allerton). doi:10.1109/allerton.2009.5394897
[22] X. Wang, M. D. Lemmon, Event-Triggering in Distributed Networked Control Systems. IEEE Transactions on Automatic Control,
56(3), 586-601, 2011.
[23] D. Yue, E. Tian, Q. Han, A delay system method to design of event-triggered control of networked control systems. IEEE Conference
on Decision and Control and European Control Conference, 2011
[24] P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. on Automatic Control, vol. 52, no. 9, pp.
1680-1685, Sep. 2007.
[25] J. Lunze, D. Lehmann, “A state-feedback approach to event-based control,” Automatica, vol. 46, no. 1,pp. 211–215, 2010.
[26] M. C. F. Donkers, W. P. M. H. Heemels, Output-based event-triggered control with guaranteed L1-gain and improved and decentralized
event-triggering,” IEEE Trans. on Automatic Control, vol. 57, no. 6, pp. 1362–1376, June.2012.
[27] Z. Zhou, H. Wang, Z. Hu, “Event-Based Time Varying Formation Control for Multiple Quadrotor UAVs with Markovian Switching
Topologies.” Complexity, vol. 2018, 2018, pp. 1–15., 2018
[28] T. Dierks, S. Jagannathan, Output Feedback Control of a Quadrotor UAV Using Neural Networks. IEEE Trans. on Neural Networks,
21(1), pp. 50-66, 2010
[29] C. Ramazan , I. Serhat, and S. Serhat, ”Statistical Wiener process model for vibration signals in accelerated aging processes of electric
motors,” Journal of Vibroengineering. vol 16, no. 2, pp. 1392-8716, Mar. 2014.
[30] R. C. L. F. Oliveira, A. N. Vargas, J. B. R. do Val, and P. L. D. Peres, ”Mode-independent H2-control of a DC motor modeled as a
Markov jump linear system,” IEEE Trans. Control System Technology, vol.22, no. 5, pp. 1915-1919, Sep. 2014.
[31] B. Øksendal and A. Sulem, ”Applied Stochastic Control of Jump Diffusions,” 2nd ed. Berlin: Springer, 2007.
[32] F. Hanson, ”Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation,” 2nd ed. Philadelphia,
PA: SIAM, 2007.
[33] M. Mahmoud, A. Ismail, Role of delays in networked control systems. 10th IEEE International Conference on Electronics, Circuits
and Systems, 2003. ICECS 2003. Proceedings of the 2003.
[34] J. F. Guerrero-Castellanos, J. J. Tellez-Guzman, S. Durand, N. Marchand, J. U. Alvarez-Munoz, Event-triggered nonlinear control for
attitude stabilization of a quadrotor. 2013 International Conference on Unmanned Aircraft Systems , 2013.
[35] K. Watanabe, ”Stochastic fuzzy control. I. Theoretical derivation,” in IEEE Int. Conf. Fuzzy Systems, Yokohama, Japan, pp. 547-554,
Mar. 1995.
[36] K. Watanabe, K. Izumi, and F. Han, ”Stochastic fuzzy servo control using multiple linear dynamic models,” in IEEE Int. Conf.
Knowledge-Based Intelligent Electronic Systems, Adelaide, SA, Australia, pp. 474–482, Apr. 1998.
[37] C. Peng, T. C. Yang, Event-triggered communication and control co-design for networked control systems. Automatica, 49(5), 1326-
1332.
[38] D. Yue, E. Tian, Q. Han, A Delay System Method for Designing Event-Triggered Controllers of Networked Control Systems. IEEE
Transactions on Automatic Control, 58(2), 475-481.
[39] S. P. Boyd, (1994). Linear matrix inequalities in system and control theory. Philadelphia: Society for Industrial and Applied Mathematics.
[40] C. S. Tseng, B. S. Chen, and H. J. Uang, ”Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,” IEEE
Trans. Fuzzy Systems, vol. 9, no. 3, pp. 381-392, Jun. 2001.
[41] T. Takagi and M. Sugeno, ”Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Systems, Man,
and Cybernetics, vol. 15, no. 1, pp. 116-132, Feb. 1985.
[42] K. Tanaka, Hua O. Wang. Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach. John Wiley & Sons,
2001.
[43] J. Xiong, Zheng, E, ”Position and attitude tracking control for a quadrotor UAV. ISA Transactions”, vol. 53, no. 3, pp. 725-731, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *