帳號:guest(3.149.229.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許博傑
作者(外文):Hsu, Bo-Jie
論文名稱(中文):基於系統致癌機制和深度學習方法探討三陰性乳腺和非三陰性乳腺癌的系統藥物發現和設計
論文名稱(外文):Systems Drug Discovery and Design for Triple-Negative Breast Cancer and Non-Triple-Negative Breast Cancer Based on Systems Carcinogenic Mechanism and Deep Learning Method.
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-sen
口試委員(中文):莊永仁
王慧菁
口試委員(外文):Chuang, Yung-Jen
Wang, Hui-Jing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061620
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:77
中文關鍵詞:系統生物學深度學習藥物設計致病機制三陰性乳腺癌
外文關鍵詞:Systems BiologhyDeep LearningDrug DesignTriple-Negative Breast CancerCarcinogenic Mechanism
相關次數:
  • 推薦推薦:0
  • 點閱點閱:345
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
三陰性乳腺癌(TNBC)是一種更為異質的乳腺癌亞型。三陰性乳腺癌(TNBC)的病因涉及各種生物信號級聯和遺傳,表觀遺傳和微環境的多因素畸變。 TNBC迫切需要新的治療方法,因為目前只有手術和化療是有效的方式。然而,為TNBC和非TNBC設計多分子藥物是一項挑戰。它需要很好地理解由級聯信號傳導途徑,遺傳和表觀遺傳調控,靶標和藥物特徵以及藥物 - 靶標相互作用引發的分子機制。本研究在系統生物學方法和深度學習方法方面,提出了一系列針對TNBC和非TNBC的系統藥物設計策略。對於系統生物學方法,我們通過大數據挖掘技術構建候選全基因組遺傳和表觀遺傳網絡(GWGEN),並通過系統識別和模型順序選擇方法,通過相應的微陣列數據識別TNBC和非TNBC的真實GWGEN。 TNBC和非TNBC的核心GWGEN由其相應的GWGEN構建,並且由KEGG途徑表示以獲得TNBC和非TNBC的核心信號傳導途徑,將其進行比較以發現導致多種細胞功能障礙(包括細胞增殖)的重要致癌生物標誌物,自噬,免疫應答,細胞凋亡,轉移,血管生成,上皮 - 間質轉化(EMT)和細胞分化。借助基於藥物 - 目標數據庫特徵向量訓練的深度神經網絡的藥物 - 靶標相互作用(DTI)模型,我們可以在表6-9中為這些藥物靶標選擇候選藥物。這些候選藥物仍然通過LD50過濾毒性,並通過連接Map(CMap)作為潛在藥物進行調節,然後結合作為潛在的多分子藥物(白藜蘆醇,西羅莫司,潑尼松龍)用於TNBC和(白藜蘆醇,西羅莫司,卡馬西平,維拉帕米)分別用於非TNBC。
Triple-negative breast cancer (TNBC) is a more heterogeneous subtype of them. The etiology of triple-negative breast cancer (TNBC) is involved in various biological signal cascades and multifactorial aberrations of genetic, epigenetic and microenvironment. New therapeutic for TNBC is urgently in need because surgery and chemotherapy are two only available modalities now. However, it is a challenge to design multiple molecular drugs for the TNBC and non-TNBC, respectively. It requires a well understanding of molecular mechanisms triggered by cascade signaling pathways, genetic and epigenetic regulation, characteristic of targets and drug, and drug-target interactions. In this study, in terms of systems biology approaches and deep learning method, we proposed a series of strategies for systems medicine design toward TNBC and non-TNBC. For systems biology approach, we constructed candidate genome-wide genetic and epigenetic network (GWGEN) by big data mining technique and identified real GWGEN of TNBC and non-TNBC by corresponding microarray data via system identification and model order selection methods. Core GWGEN of TNBC and non-TNBC were constructed from their corresponding GWGENs and their denoted by KEGG pathways to obtain core signaling pathways of TNBC and non-TNBC, which were compared to find essential carcinogenic biomarkers to bring about multiple cellular dysfunctions including cell proliferation, autophagy, immune response, apoptosis, metastasis, angiogenesis, epithelial-mesenchymal transition (EMT), and cell differentiation. With the help of the drug-target interaction (DTI) model based on deep neural network trained through feature vectors of drug-target databases, we could select candidate drugs in Tables 6-9 for these drug targets. These candidate drugs were still filtered for the toxicity by LD50 and for regulation ability by connectively Map (CMap) as potential drugs and then combined as potential multiple-molecule drugs (resveratrol, sirolimus, prednisolone) for TNBC and (resveratrol, sirolimus, carbamazepine, verapamil) for non-TNBC, respectively.
Content
Chapter1 Introduction 1
Chapter 2. Results 8
2.1 Investigation of core signaling pathways from identified GWGEN in TNBC and non-TNBC. 8
2.2 Common core pathways from the common core GWGEN between TNBC and non-TNBC 10
2.3 Specific core pathways from core GWGEN in TNBC 12
2.4 Specific core pathways from core GWGEN in non-TNBC 13
2.5 Select drug targets to design multi-molecule drugs for TNBC and non-TNBC 15
Chapter 3. Discussion 17
3.1 The Common Carcinogenic Molecular Mechanism between TNBC and non-TNBC 17
3.2 The Specific Carcinogenic Molecular Mechanism in TNBC 20
3.3 The Specific Carcinogenic Molecular Mechanism in non-TNBC 22
3.4 Overview of Systems Drug Discovery and Design for TNBC and non-TNBC by Deep Learning Approaches and Data Mining Methods. 23
Chapter 4. Conclusion 26
Chapter 5. Method and Materials 28
5.1 Overview of the construction for core genome-wide genetic and epigenetic networks (GWGENs) of TNBC and non-TNBC. 28
5.2 Big data mining and preprocessing of microarray data for constructing candidate GWGENs. 29
5.3 Constructing the Stochastic Models of the GWGEN to identify real GWGEN of TNBC and non-TNBC. 30
5.4 Parameter estimation of the models of candidate GWGENs through system identification scheme, system order detection method and microarray data. 34
5.5 Applying the principal network projection (PNP) method to extract core GWGENs in the real GWGENs. 40
5.6 Systems Discovery and Design Multiple-Molecule drug via DNN of Drug-Target Interaction Model and Drug Toxicity Filter 44
Tables 50
Table 1. The total number of nodes and edges in candidate GWGENs and identified GWGENs of TNBC and non-TNBC. 50
Table 2. The drug targets identified for each of TNBC and non-TNBC. 51
Table 3. The pathway enrichment analysis of proteins by applying the DAVID in core GEGEN of triple-negative breast cancer 52
Table 4. The pathway enrichment analysis of proteins by applying the DAVID in core GEGEN of non-triple-negative breast cancer 53
Table 5. The number of overlap proteins and genes in TNBC and non-TNBC 53
Table 6. The potential drugs identified for target BRCA1 and AKT1 54
Table 8. The potential drugs identified for target STAT3 and MMP2 55
Table 9. The potential drugs identified for target NFE2L1 55
Table 10 Potential multiple-molecule drug and the corresponding target genes for TNBC 56
Table 11 Potential multiple-molecule drug and the corresponding target genes for non-TNBC 57
FIGURES 58
Figure 1. Flowchart of using systems biology method to construct candidate GWGENs, real GWGENs, core GWGENs and core signaling pathways of TNBC and non-TNBC and find potential genetic and epigenetic drug targets for multiple-molecule drug design. 59
Figure 2. Flowchart of the proposed systems drug discovery and design method 61
Figure 3. The real genome-wide genetic and epigenetic network (GWGEN) of TNBC. 62
Figure 4. The real genome-wide genetic and epigenetic network (GWGEN) of non-TNBC. 63
Figure 5. The core genome-wide genetic and epigenetic network (GWGEN) of TNBC 64
Figure 6. The core genome-wide genetic and epigenetic network (GWGEN) of non-TNBC 65
Figure 7. The core signaling pathways are obtained by projecting core GWGENs to KEGG pathways to investigate the carcinogenic progression mechanism of triple-negative breast cancer. 66
Figure 8. The core signaling pathways are obtained by projecting core GWGENs to KEGG pathways to investigate the carcinogenic progression mechanism of non-triple-negative breast cancer. 67
Figure 9. The common and specific core signaling pathways of core signaling pathways of TNBC in Figure 7 and non-TNBC in Figure 8. 69
Figure 10. The ROC curve of different DTI models for predicting drug-target interaction. 70
Reference 71

Reference
1. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108.
2. Cleator, S., W. Heller, and R.C. Coombes, Triple-negative breast cancer: therapeutic options. Lancet Oncol, 2007. 8(3): p. 235-44.
3. Anders, C. and L.A. Carey, Understanding and treating triple-negative breast cancer. Oncology (Williston Park), 2008. 22(11): p. 1233-9; discussion 1239-40, 1243.
4. Rakha, E.A., et al., Prognostic markers in triple-negative breast cancer. Cancer, 2007. 109(1): p. 25-32.
5. Kalimutho, M., et al., Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease. Trends Pharmacol Sci, 2015. 36(12): p. 822-846.
6. Goncalves, H., Jr., et al., Survival Study of Triple-Negative and Non-Triple-Negative Breast Cancer in a Brazilian Cohort. Clin Med Insights Oncol, 2018. 12: p. 1179554918790563.
7. Antolin, A.A., et al., Polypharmacology in Precision Oncology: Current Applications and Future Prospects. Current pharmaceutical design, 2016. 22(46): p. 6935-6945.
8. Macfarlane, L.-A. and P.R. Murphy, MicroRNA: Biogenesis, Function and Role in Cancer. Current genomics, 2010. 11(7): p. 537-561.
9. Oliveto, S., et al., Role of microRNAs in translation regulation and cancer. World journal of biological chemistry, 2017. 8(1): p. 45-56.
10. Zaravinos, A., The Regulatory Role of MicroRNAs in EMT and Cancer. Journal of oncology, 2015. 2015: p. 865816-865816.
11. Birney, E., et al., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007. 447(7146): p. 799-816.
12. Zhao, M., et al., MALAT1: A long non-coding RNA highly associated with human cancers. Oncol Lett, 2018. 16(1): p. 19-26.
13. Sanchez Calle, A., et al., Emerging roles of long non-coding RNA in cancer. Cancer Sci, 2018. 109(7): p. 2093-2100.
14. Gutschner, T. and S. Diederichs, The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol, 2012. 9(6): p. 703-19.
15. Jadaliha, M., et al., Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget, 2016. 7(26): p. 40418-40436.
16. Kelly, T.K., D.D. De Carvalho, and P.A. Jones, Epigenetic modifications as therapeutic targets. Nat Biotechnol, 2010. 28(10): p. 1069-78.
17. Rodenhiser, D. and M. Mann, Epigenetics and human disease: translating basic biology into clinical applications. Cmaj, 2006. 174(3): p. 341-8.
18. Moore, L.D., T. Le, and G. Fan, DNA methylation and its basic function. Neuropsychopharmacology, 2013. 38(1): p. 23-38.
19. Bannister, A.J. and T. Kouzarides, Regulation of chromatin by histone modifications. Cell Res, 2011. 21(3): p. 381-95.
20. Sawicka, A. and C. Seiser, Histone H3 phosphorylation - a versatile chromatin modification for different occasions. Biochimie, 2012. 94(11): p. 2193-201.
21. Anastasiou, D., Tumour microenvironment factors shaping the cancer metabolism landscape. British journal of cancer, 2017. 116(3): p. 277-286.
22. Walker, C., E. Mojares, and A. Del Río Hernández, Role of Extracellular Matrix in Development and Cancer Progression. International journal of molecular sciences, 2018. 19(10): p. 3028.
23. He, X., B. Lee, and Y. Jiang, Cell-ECM Interactions in Tumor Invasion. Adv Exp Med Biol, 2016. 936: p. 73-91.
24. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: A dynamic niche in cancer progression. The Journal of Cell Biology, 2012. 196(4): p. 395.
25. DiMasi, J.A., R.W. Hansen, and H.G. Grabowski, The price of innovation: new estimates of drug development costs. J Health Econ, 2003. 22(2): p. 151-85.
26. Paul, S.M., et al., How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov, 2010. 9(3): p. 203-14.
27. Gribkoff, V.K. and L.K. Kaczmarek, The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology, 2017. 120: p. 11-19.
28. Jin, G. and S.T.C. Wong, Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug discovery today, 2014. 19(5): p. 637-644.
29. Yang, F., J. Xu, and J. Zeng, Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data. Pac Symp Biocomput, 2014: p. 148-59.
30. Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000. 28(1): p. 27-30.
31. Wishart, D.S., et al., DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic acids research, 2008. 36(Database issue): p. D901-D906.
32. Gaulton, A., et al., ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic acids research, 2012. 40(Database issue): p. D1100-D1107.
33. Kuhn, M., et al., STITCH: interaction networks of chemicals and proteins. Nucleic acids research, 2008. 36(Database issue): p. D684-D688.
34. LeBeau, J.E., The role of the LD50 determination in drug safety evaluation. Regul Toxicol Pharmacol, 1983. 3(1): p. 71-4.
35. Lamb, J., et al., The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006. 313(5795): p. 1929-35.
36. Fawcett, T., An introduction to ROC analysis. Pattern Recognition Letters, 2006. 27(8): p. 861-874.
37. More, A.S. and D.P. Rana. Review of random forest classification techniques to resolve data imbalance. in 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM). 2017.
38. Laaksonen, J. and E. Oja. Classification with learning k-nearest neighbors. in Proceedings of International Conference on Neural Networks (ICNN'96). 1996.
39. Tang, J., et al., The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nature Reviews Drug Discovery, 2018. 17: p. 854.
40. Hecht, I., et al., ILDR2 Is a Novel B7-like Protein That Negatively Regulates T Cell Responses. J Immunol, 2018. 200(6): p. 2025-2037.
41. Gayther, S.A., et al., Mutations truncating the EP300 acetylase in human cancers. Nat Genet, 2000. 24(3): p. 300-3.
42. Dragomir, M., et al., Key questions about the checkpoint blockade-are microRNAs an answer? Cancer Biol Med, 2018. 15(2): p. 103-115.
43. Li, J., et al., The role, mechanism and potentially novel biomarker of microRNA-17-92 cluster in macrosomia. Sci Rep, 2015. 5: p. 17212.
44. Xiao, J., et al., ARRDC1 and ARRDC3 act as tumor suppressors in renal cell carcinoma by facilitating YAP1 degradation. Am J Cancer Res, 2018. 8(1): p. 132-143.
45. Zheng, Y., et al., ARRDC3 Inhibits the Progression of Human Prostate Cancer Through ARRDC3-ITGbeta4 Pathway. Curr Mol Med, 2017. 17(3): p. 221-229.
46. Hwa Soung, Y., K. Pruitt, and J. Chung, Abstract 580: Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells. Vol. 4. 2014. 3846.
47. Manzotti, C.N., et al., Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur J Immunol, 2002. 32(10): p. 2888-96.
48. Lorin, S., et al., Autophagy regulation and its role in cancer. Semin Cancer Biol, 2013. 23(5): p. 361-79.
49. Maiuri, M.C., et al., Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ, 2009. 16(1): p. 87-93.
50. Salminen, A., K. Kaarniranta, and A. Kauppinen, Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev, 2013. 12(2): p. 520-34.
51. Chen, J., et al., CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell, 2011. 19(4): p. 541-55.
52. Dimberg, J., A. Hugander, and D. Wagsater, Protein expression of the chemokine, CCL28, in human colorectal cancer. Int J Oncol, 2006. 28(2): p. 315-9.
53. Cousin, S., et al., Targeting ERBB2 mutations in solid tumors: biological and clinical implications. Journal of Hematology & Oncology, 2018. 11(1): p. 86.
54. Mishra, R., A.B. Hanker, and J.T. Garrett, Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget, 2017. 8(69): p. 114371-114392.
55. Connell, C.M. and G.J. Doherty, Activating HER2 mutations as emerging targets in multiple solid cancers. ESMO open, 2017. 2(5): p. e000279-e000279.
56. Chrysanthou, E., et al., Phenotypic characterisation of breast cancer: the role of CDC42. Breast Cancer Res Treat, 2017. 164(2): p. 317-325.
57. White, E., The role for autophagy in cancer. J Clin Invest, 2015. 125(1): p. 42-6.
58. Rosenfeldt, M.T. and K.M. Ryan, The multiple roles of autophagy in cancer. Carcinogenesis, 2011. 32(7): p. 955-63.
59. Lee, H., et al., STAT3: a target to enhance antitumor immune response. Curr Top Microbiol Immunol, 2011. 344: p. 41-59.
60. Clatot, F., L. Augusto, and F. Di Fiore, ESR1 mutations in breast cancer. Aging (Albany NY), 2017. 9(1): p. 3-4.
61. Riggio, M., et al., AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep, 2017. 7: p. 44244.
62. Tang, P.M.-K., et al., Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nature Communications, 2017. 8: p. 14677.
63. Han, B., et al., FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer. Cell Rep, 2015. 13(5): p. 1046-58.
64. Jensen, T.W., et al., Diagnosis of Basal-Like Breast Cancer Using a FOXC1-Based Assay. J Natl Cancer Inst, 2015. 107(8).
65. Ray, P.S., et al., FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res, 2010. 70(10): p. 3870-6.
66. Han, B., et al., FOXC1: an emerging marker and therapeutic target for cancer. Oncogene, 2017. 36(28): p. 3957-3963.
67. Yonesaka, K., et al., Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Science translational medicine, 2011. 3(99): p. 99ra86-99ra86.
68. Végran, F., et al., Gene expression profile and response to trastuzumab-docetaxel-based treatment in breast carcinoma. British journal of cancer, 2009. 101(8): p. 1357-1364.
69. Wu, J., et al., Ras-related protein Rap2c promotes the migration and invasion of human osteosarcoma cells. Oncology letters, 2018. 15(4): p. 5352-5358.
70. Zhu, W., et al., Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr Cancer, 2012. 64(3): p. 393-400.
71. Alayev, A., et al., The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells. J Cell Biochem, 2015. 116(3): p. 450-7.
72. Bonnefoi, H., et al., A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Annals of Oncology, 2016. 27(5): p. 812-818.
73. !!! INVALID CITATION !!! {}.
74. Zhao, L., et al., Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells. Int J Oncol, 2016. 49(1): p. 99-110.
75. Yeh, S.-J., et al., Systems Biology Approaches to Investigate Genetic and Epigenetic Molecular Progression Mechanisms for Identifying Gene Expression Signatures in Papillary Thyroid Cancer. International Journal of Molecular Sciences, 2019. 20(10).
76. Horak, C.E., et al., Biomarker analysis of neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone or Paclitaxel in early-stage breast cancer. Clin Cancer Res, 2013. 19(6): p. 1587-95.
77. Miyake, T., et al., GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer Sci, 2012. 103(5): p. 913-20.
78. Itoh, M., et al., Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers. Breast Cancer Res Treat, 2014. 143(2): p. 403-9.
79. Chatr-Aryamontri, A., et al., The BioGRID interaction database: 2015 update. Nucleic Acids Res, 2015. 43(Database issue): p. D470-8.
80. Bovolenta, L.A., M.L. Acencio, and N. Lemke, HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics, 2012. 13: p. 405.
81. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20.
82. Chen, B.S. and C.C. Wu, Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells, 2013. 2(4): p. 635-88.
83. Li, C.W. and B.S. Chen, Network Biomarkers of Bladder Cancer Based on a Genome-Wide Genetic and Epigenetic Network Derived from Next-Generation Sequencing Data. Dis Markers, 2016. 2016: p. 4149608.
84. Cao, D.S., et al., Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics, 2015. 31(2): p. 279-81.
85. He, Z., et al., Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features. PLOS ONE, 2010. 5(3): p. e9603.
86. Li, Z.R., et al., PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Research, 2006. 34(suppl_2): p. W32-W37.
87. Song, F., Z. Guo, and D. Mei. Feature Selection Using Principal Component Analysis. in 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization. 2010.
88. Baldi, P., Gradient descent learning algorithm overview: a general dynamical systems perspective. IEEE Transactions on Neural Networks, 1995. 6(1): p. 182-195.
89. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning. 2016: The MIT Press. 800.
90. Chinedu, E., D. Arome, and F.S. Ameh, A new method for determining acute toxicity in animal models. Toxicol Int, 2013. 20(3): p. 224-6.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *