|
Reference 1. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108. 2. Cleator, S., W. Heller, and R.C. Coombes, Triple-negative breast cancer: therapeutic options. Lancet Oncol, 2007. 8(3): p. 235-44. 3. Anders, C. and L.A. Carey, Understanding and treating triple-negative breast cancer. Oncology (Williston Park), 2008. 22(11): p. 1233-9; discussion 1239-40, 1243. 4. Rakha, E.A., et al., Prognostic markers in triple-negative breast cancer. Cancer, 2007. 109(1): p. 25-32. 5. Kalimutho, M., et al., Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease. Trends Pharmacol Sci, 2015. 36(12): p. 822-846. 6. Goncalves, H., Jr., et al., Survival Study of Triple-Negative and Non-Triple-Negative Breast Cancer in a Brazilian Cohort. Clin Med Insights Oncol, 2018. 12: p. 1179554918790563. 7. Antolin, A.A., et al., Polypharmacology in Precision Oncology: Current Applications and Future Prospects. Current pharmaceutical design, 2016. 22(46): p. 6935-6945. 8. Macfarlane, L.-A. and P.R. Murphy, MicroRNA: Biogenesis, Function and Role in Cancer. Current genomics, 2010. 11(7): p. 537-561. 9. Oliveto, S., et al., Role of microRNAs in translation regulation and cancer. World journal of biological chemistry, 2017. 8(1): p. 45-56. 10. Zaravinos, A., The Regulatory Role of MicroRNAs in EMT and Cancer. Journal of oncology, 2015. 2015: p. 865816-865816. 11. Birney, E., et al., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007. 447(7146): p. 799-816. 12. Zhao, M., et al., MALAT1: A long non-coding RNA highly associated with human cancers. Oncol Lett, 2018. 16(1): p. 19-26. 13. Sanchez Calle, A., et al., Emerging roles of long non-coding RNA in cancer. Cancer Sci, 2018. 109(7): p. 2093-2100. 14. Gutschner, T. and S. Diederichs, The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol, 2012. 9(6): p. 703-19. 15. Jadaliha, M., et al., Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget, 2016. 7(26): p. 40418-40436. 16. Kelly, T.K., D.D. De Carvalho, and P.A. Jones, Epigenetic modifications as therapeutic targets. Nat Biotechnol, 2010. 28(10): p. 1069-78. 17. Rodenhiser, D. and M. Mann, Epigenetics and human disease: translating basic biology into clinical applications. Cmaj, 2006. 174(3): p. 341-8. 18. Moore, L.D., T. Le, and G. Fan, DNA methylation and its basic function. Neuropsychopharmacology, 2013. 38(1): p. 23-38. 19. Bannister, A.J. and T. Kouzarides, Regulation of chromatin by histone modifications. Cell Res, 2011. 21(3): p. 381-95. 20. Sawicka, A. and C. Seiser, Histone H3 phosphorylation - a versatile chromatin modification for different occasions. Biochimie, 2012. 94(11): p. 2193-201. 21. Anastasiou, D., Tumour microenvironment factors shaping the cancer metabolism landscape. British journal of cancer, 2017. 116(3): p. 277-286. 22. Walker, C., E. Mojares, and A. Del Río Hernández, Role of Extracellular Matrix in Development and Cancer Progression. International journal of molecular sciences, 2018. 19(10): p. 3028. 23. He, X., B. Lee, and Y. Jiang, Cell-ECM Interactions in Tumor Invasion. Adv Exp Med Biol, 2016. 936: p. 73-91. 24. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: A dynamic niche in cancer progression. The Journal of Cell Biology, 2012. 196(4): p. 395. 25. DiMasi, J.A., R.W. Hansen, and H.G. Grabowski, The price of innovation: new estimates of drug development costs. J Health Econ, 2003. 22(2): p. 151-85. 26. Paul, S.M., et al., How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov, 2010. 9(3): p. 203-14. 27. Gribkoff, V.K. and L.K. Kaczmarek, The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology, 2017. 120: p. 11-19. 28. Jin, G. and S.T.C. Wong, Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug discovery today, 2014. 19(5): p. 637-644. 29. Yang, F., J. Xu, and J. Zeng, Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data. Pac Symp Biocomput, 2014: p. 148-59. 30. Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000. 28(1): p. 27-30. 31. Wishart, D.S., et al., DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic acids research, 2008. 36(Database issue): p. D901-D906. 32. Gaulton, A., et al., ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic acids research, 2012. 40(Database issue): p. D1100-D1107. 33. Kuhn, M., et al., STITCH: interaction networks of chemicals and proteins. Nucleic acids research, 2008. 36(Database issue): p. D684-D688. 34. LeBeau, J.E., The role of the LD50 determination in drug safety evaluation. Regul Toxicol Pharmacol, 1983. 3(1): p. 71-4. 35. Lamb, J., et al., The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006. 313(5795): p. 1929-35. 36. Fawcett, T., An introduction to ROC analysis. Pattern Recognition Letters, 2006. 27(8): p. 861-874. 37. More, A.S. and D.P. Rana. Review of random forest classification techniques to resolve data imbalance. in 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM). 2017. 38. Laaksonen, J. and E. Oja. Classification with learning k-nearest neighbors. in Proceedings of International Conference on Neural Networks (ICNN'96). 1996. 39. Tang, J., et al., The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nature Reviews Drug Discovery, 2018. 17: p. 854. 40. Hecht, I., et al., ILDR2 Is a Novel B7-like Protein That Negatively Regulates T Cell Responses. J Immunol, 2018. 200(6): p. 2025-2037. 41. Gayther, S.A., et al., Mutations truncating the EP300 acetylase in human cancers. Nat Genet, 2000. 24(3): p. 300-3. 42. Dragomir, M., et al., Key questions about the checkpoint blockade-are microRNAs an answer? Cancer Biol Med, 2018. 15(2): p. 103-115. 43. Li, J., et al., The role, mechanism and potentially novel biomarker of microRNA-17-92 cluster in macrosomia. Sci Rep, 2015. 5: p. 17212. 44. Xiao, J., et al., ARRDC1 and ARRDC3 act as tumor suppressors in renal cell carcinoma by facilitating YAP1 degradation. Am J Cancer Res, 2018. 8(1): p. 132-143. 45. Zheng, Y., et al., ARRDC3 Inhibits the Progression of Human Prostate Cancer Through ARRDC3-ITGbeta4 Pathway. Curr Mol Med, 2017. 17(3): p. 221-229. 46. Hwa Soung, Y., K. Pruitt, and J. Chung, Abstract 580: Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells. Vol. 4. 2014. 3846. 47. Manzotti, C.N., et al., Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur J Immunol, 2002. 32(10): p. 2888-96. 48. Lorin, S., et al., Autophagy regulation and its role in cancer. Semin Cancer Biol, 2013. 23(5): p. 361-79. 49. Maiuri, M.C., et al., Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ, 2009. 16(1): p. 87-93. 50. Salminen, A., K. Kaarniranta, and A. Kauppinen, Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev, 2013. 12(2): p. 520-34. 51. Chen, J., et al., CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell, 2011. 19(4): p. 541-55. 52. Dimberg, J., A. Hugander, and D. Wagsater, Protein expression of the chemokine, CCL28, in human colorectal cancer. Int J Oncol, 2006. 28(2): p. 315-9. 53. Cousin, S., et al., Targeting ERBB2 mutations in solid tumors: biological and clinical implications. Journal of Hematology & Oncology, 2018. 11(1): p. 86. 54. Mishra, R., A.B. Hanker, and J.T. Garrett, Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget, 2017. 8(69): p. 114371-114392. 55. Connell, C.M. and G.J. Doherty, Activating HER2 mutations as emerging targets in multiple solid cancers. ESMO open, 2017. 2(5): p. e000279-e000279. 56. Chrysanthou, E., et al., Phenotypic characterisation of breast cancer: the role of CDC42. Breast Cancer Res Treat, 2017. 164(2): p. 317-325. 57. White, E., The role for autophagy in cancer. J Clin Invest, 2015. 125(1): p. 42-6. 58. Rosenfeldt, M.T. and K.M. Ryan, The multiple roles of autophagy in cancer. Carcinogenesis, 2011. 32(7): p. 955-63. 59. Lee, H., et al., STAT3: a target to enhance antitumor immune response. Curr Top Microbiol Immunol, 2011. 344: p. 41-59. 60. Clatot, F., L. Augusto, and F. Di Fiore, ESR1 mutations in breast cancer. Aging (Albany NY), 2017. 9(1): p. 3-4. 61. Riggio, M., et al., AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep, 2017. 7: p. 44244. 62. Tang, P.M.-K., et al., Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nature Communications, 2017. 8: p. 14677. 63. Han, B., et al., FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer. Cell Rep, 2015. 13(5): p. 1046-58. 64. Jensen, T.W., et al., Diagnosis of Basal-Like Breast Cancer Using a FOXC1-Based Assay. J Natl Cancer Inst, 2015. 107(8). 65. Ray, P.S., et al., FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res, 2010. 70(10): p. 3870-6. 66. Han, B., et al., FOXC1: an emerging marker and therapeutic target for cancer. Oncogene, 2017. 36(28): p. 3957-3963. 67. Yonesaka, K., et al., Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Science translational medicine, 2011. 3(99): p. 99ra86-99ra86. 68. Végran, F., et al., Gene expression profile and response to trastuzumab-docetaxel-based treatment in breast carcinoma. British journal of cancer, 2009. 101(8): p. 1357-1364. 69. Wu, J., et al., Ras-related protein Rap2c promotes the migration and invasion of human osteosarcoma cells. Oncology letters, 2018. 15(4): p. 5352-5358. 70. Zhu, W., et al., Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr Cancer, 2012. 64(3): p. 393-400. 71. Alayev, A., et al., The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells. J Cell Biochem, 2015. 116(3): p. 450-7. 72. Bonnefoi, H., et al., A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Annals of Oncology, 2016. 27(5): p. 812-818. 73. !!! INVALID CITATION !!! {}. 74. Zhao, L., et al., Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells. Int J Oncol, 2016. 49(1): p. 99-110. 75. Yeh, S.-J., et al., Systems Biology Approaches to Investigate Genetic and Epigenetic Molecular Progression Mechanisms for Identifying Gene Expression Signatures in Papillary Thyroid Cancer. International Journal of Molecular Sciences, 2019. 20(10). 76. Horak, C.E., et al., Biomarker analysis of neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone or Paclitaxel in early-stage breast cancer. Clin Cancer Res, 2013. 19(6): p. 1587-95. 77. Miyake, T., et al., GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer Sci, 2012. 103(5): p. 913-20. 78. Itoh, M., et al., Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers. Breast Cancer Res Treat, 2014. 143(2): p. 403-9. 79. Chatr-Aryamontri, A., et al., The BioGRID interaction database: 2015 update. Nucleic Acids Res, 2015. 43(Database issue): p. D470-8. 80. Bovolenta, L.A., M.L. Acencio, and N. Lemke, HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics, 2012. 13: p. 405. 81. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20. 82. Chen, B.S. and C.C. Wu, Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells, 2013. 2(4): p. 635-88. 83. Li, C.W. and B.S. Chen, Network Biomarkers of Bladder Cancer Based on a Genome-Wide Genetic and Epigenetic Network Derived from Next-Generation Sequencing Data. Dis Markers, 2016. 2016: p. 4149608. 84. Cao, D.S., et al., Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics, 2015. 31(2): p. 279-81. 85. He, Z., et al., Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features. PLOS ONE, 2010. 5(3): p. e9603. 86. Li, Z.R., et al., PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Research, 2006. 34(suppl_2): p. W32-W37. 87. Song, F., Z. Guo, and D. Mei. Feature Selection Using Principal Component Analysis. in 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization. 2010. 88. Baldi, P., Gradient descent learning algorithm overview: a general dynamical systems perspective. IEEE Transactions on Neural Networks, 1995. 6(1): p. 182-195. 89. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning. 2016: The MIT Press. 800. 90. Chinedu, E., D. Arome, and F.S. Ameh, A new method for determining acute toxicity in animal models. Toxicol Int, 2013. 20(3): p. 224-6.
|