帳號:guest(3.133.111.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張育誠
作者(外文):Chang, Yu-Cheng
論文名稱(中文):非區域均值濾波利用中央窩化自相似特性作用於超音波斑點雜訊抑制處理
論文名稱(外文):Ultrasound Speckle Reduction Using Foveated Self-Similarity on Nonlocal Means Filtering
指導教授(中文):李夢麟
指導教授(外文):Li, Meng-Lin
口試委員(中文):葉秩光
謝寶育
口試委員(外文):Yeh, Chih-Kuang
Hsieh, Bao-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061608
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:94
中文關鍵詞:超音波成像斑點抑制非區域均值濾波中央窩自相似特性點擴散函數
外文關鍵詞:Ultrasound imagingSpeckle reductionNonlocal means filterFoveationSelf-similarityPoint spread function
相關次數:
  • 推薦推薦:0
  • 點閱點閱:501
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
超音波斑點雜訊在影像上會降低成像的對比,並且會使影像上的病理特徵被其掩蓋住;因此導致臨床診斷上的不準確性,而此特性亦會造成醫學計算機視覺技術的受限,例如病灶區域的自動檢測和分割。儘管多年來已經提出了許多斑點雜訊減少方法,例如優化貝氏非區域均值濾波器和非等向擴散斑點雜訊抑制濾波器等,但它們仍然存在兩個主要問題:在影像特徵細節上的保留不足,包括結構邊緣,紋理和點狀結構等,及過度模糊化使影像看起來像是人為。為解決以上這兩個問題,我們提出了一種新的中央窩化非區域均值濾波技術,其靈感來自於人類的視覺系統。傳統的非區域均值濾波器透過在圖像內的不同區域搜索類似的區塊來進行去除斑點,透過由目標區塊和搜索窗口內區塊之間的歐氏距離評估兩者的相似度來計算權重。在我們的技術中,使用了中央窩化自相似性而不是傳統的自相似性。這種自相似性產生模擬人類視網膜特性的新區塊運算子,銳化區塊中心的像素並使其周邊模糊。此外,在許多文獻中,搜索窗口大小和目標區塊大小此兩參數設置均不一致;然而,在我們提出的研究中,它們兩者均可從超音波成像的角度上進行參數設置,即根據解析度單元的大小進行調整,進而可應用在不同規格的超音波成像系統上。我們提出的超音波斑點雜訊抑制技術之性能也與目前最先進的方法進行了比較。實驗結果表明,我們提出的方法可以更有效地保留結構邊緣細節,紋理和點狀結構,同時有效地去除斑點。並且客觀與系統地比較對比度雜訊比和對比度量測的定量測量。
Ultrasound speckle-noise debases imaging contrast and hides anatomical details; thus causing inaccuracy in clinical diagnosis as well as limiting the applications of medical computer vision techniques such as automatic detection and segmentation of lesion regions. Although many speckle reduction methods such as optimized Bayesian nonlocal means (OBNLM) and speckle reducing anisotropic diffusion (SRAD) filters have been proposed for years, they still suffer two significant problems - insufficient preservation of specific details including structural edge, textures and point-like structures as well as inordinate blurring making image appearance artificial. To solve these two problems, we propose a novel foveated nonlocal means despeckle filtering technique, inspired by the human visual system. Conventional NLM filters despeckles via searching for analogous patches at different areas within the image and then estimating the weighting by the degrees of similarity appraised by a windowed Euclidean distance between the target and searching patches. In our technique, foveated self-similarity is used instead of conventional self-similarity. The foveated self-similarity is based on a new patch operator mimicking human retina properties, sharpening patch pixels in the center and blurring them near the periphery. Moreover, throughout the literature, the tuning of the search window and patch sizes and other parameters is not consistent; nonetheless, in this study, they are tuned universally from ultrasound imaging perspective, i.e., according to the size of resolution cell, which allows the adaption to different imaging systems and settings. The performance of our proposed technique in speckle reduction is also compared with those of the state-of-the-art approaches. Experimental results indicate that the proposed method can more effectively retain structural edge details, textures, and point-like structures while removing speckles forcefully. Quantitative measures such as contrast-to-noise ratio and contrast measure are also presented.
摘要 I
Abstract II
Table of Contents IV
List of Figure VII
List of Table XVI
Chapter 1 Introduction 1
1.1 Ultrasound speckle noise 1
1.1.1 Cause and Influence of Speckle Noise 1
1.1.2 Model of Speckle Noise 4
1.2 Speckle Reduction Technologies of Ultrasound 6
1.2.1 Local Means Filter 6
1.2.2 Non-local Means Filter 7
1.2.3 Optimized Bayesian Non-Local Means Filter 14
1.2.4 Perona-Malik Diffusion Model 19
1.2.5 Speckle Reducing Anisotropic Diffusion 22
1.3 Motivation and Purpose 24
1.4 Organization of Thesis 27
Chapter 2 Materials and Methods 29
2.1 Foveated Self-Similarity Nonlocal Means 29
2.1.1 Foveation 29
2.1.2 Foveation Operator 31
2.1.2.1 Foveated Distance and Foveated Patch 31
2.1.2.2 Constrained Design for the Foveation Operator 33
2.1.2.3 Design Foveation Operator 35
2.1.2.4 Foveated NLM 40
2.2 Simulation 41
2.3 Adjust Parameter Based on PSF 44
2.4 Image Quality indices 48
2.4.1 Contrast-to-noise Ratio (CNR) 48
2.4.2 Contrast Measure (CM) 49
2.4.3 Edge Preservation Index (EPI) 50
2.5 Clinical Data 51
Chapter 3 Experimental Results and Discussion 55
3.1 Optimizing Parameters of Fov-NLM 55
3.2 Experiments for Simulated Ultrasound Images 66
3.3 Experiments for Clinical Ultrasound Images 75
Chapter 4 Conclusions and Future Works 85
4.1 Conclusions 85
4.2 Future Work 86
References 88

1 H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J. A. Jensen, and O. Bernard, “Plane-wave imaging challenge in medical ultrasound,” in 2016 IEEE International Ultrasonics Symposium (IUS), Sept 2016, pp. 1–4.
2 Narayanan S K, Wahidabanu R S D. “A view on despeckling in ultrasound imaging,” Int J Signal Process, 2009, 2: 85–98
3 Loizou C P, Patticheis C S. “Despeckle filtering algorithms and software for ultrasound imaging.” In: Synthesis lectures on algorithms and software in engineering #1. Colorado: Morgan & Claypool Publishers, 2008
4 Christoph B. Burckhardt, "Speckle in ultrasound B-mode scans.", IEEE Transactions on Sonics and Ultrasonics (Volume: 25, Issue: 1, Jan. 1978)
5 Steinman AH, Lui EYL, Johnston KW, Cobbold RSC. "Sample volume shape for pulsed-flow velocity estimation using a linear array." Ultra-sound Med Biol 2004; 30:1409-1
6 T. Dean, Q.Chen and Z. Liu. "Analysis of ultrasonic backscattering microstructural feature of human kidney based on wavelets transform and "WD cepstrum," Chinese Journal of Biomedical Engineering, (361-367,2000)
7 J. S. Bleck, U. Ranft, M. Gebel, H. Hecker, M. Westhoff-Bleck, C. Theismann, S. Wagner, and M. Manns, “Random field models in the textural analysis of ultrasound image of liver,” IEEE Trans. Med. Imag., vol. 15, no. 6, pp. 796–801, Dec. 1996.
8 M. Forouzanfar and H. Abrishami-Moghaddam, “Ultrasound Speckle Reduction in the Complex Wavelet Domain, in Principles of Waveform Diversity and Design”, M. Wicks, E. Mokole, S. Blunt, R. Schneible, and V. Amuso (eds.), SciTech Publishing, 2010, Section B - Part V: Remote Sensing, pp. 558-77.
9 G. Andria, F. Attivissimo, G. Cavone, N. Giaquinto and A.M.L. Lanzolla, "Linear filtering of 2-D wavelet coefficients for denoising ultrasound" medical images, Measurement 45 (2012) 1792–1800.
10 Qiankai Wang “Discussion on the fully developed speckle field,” Optik - International Journal for Light and Electron Optics Volume 124, Issue 17, September 2013, Pages 2948-2950
11 J. W. Goodman,” Laser Speckle and Related Phenomenon,” J. C. Dainty, Ed. New York: Springer-Verlag, 1975.
12 Goodman J, “Speckle phenomena: Theory and applications,” 1st ed. 2006, Denver: Roberts and Company, USA
13 C. B. Burckhardt, “Speckle in ultrasound B-mode scans,” IEEE Trans. Son. Ultrason., vol. SU-25, no. 1, pp. 1–6, Jan. 1978.
14 O. V. Michailovich and A. Tannenbaum, “Despeckling of medical ultrasound images,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 53, no. 1, pp. 64–78, Jan. 2006
15 Goodman, J. W. "Some fundamental properties of speckle," Journal of the Optical Society of America. 1976, vol. 66, iss. 11, pp. 1145–1150. ISSN 1520-8532.
16 K. Abd-Elmoniem, A. Youssef, Y. Kadah, "Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion," IEEE Trans. Biomed. Eng. 49, 997–1014 (2002)
17 A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2. San Diego, CA, USA, Jun. 2005, pp. 60–65
18 P. Coupé, P. Hellier, C. Kervrann, C. Barillot,,“Nonlocal means-based speckle filtering for ultrasound images,” IEEE Trans. Image Proces. 18, 2221–2229 (2009)
19 P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann, C. Barillot, “An optimized blockwise non local means denoising filter for 3D magnetic resonance images.” IEEE Trans. Med. Imaging 27, 425–441 (2008)
20 C. Kervrann, J. Boulanger, P. Coupé, “Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal.”, Proceedings of the Conference on Scale-Space and Variable Method Ischia, Italy, 2007, pp. 520–532
21 Perona P, Malik J. "Scale-space and edge-detection using anisotropic diffusion." IEEE T Pattern Anal, 1990, 12: 629–639
22 Y. Yu and S. T. Acton, “Speckle reducing anisotropic diffusion,” IEEE Trans. Image Process., vol. 11, no. 11, pp. 1260–1270, Nov. 2002.
23 Shao-bo Jiao, “Research on Color Image Denoising Algorithm with Non-Local Means,” Thesis for Master’s degree, College of Physics and Electronics Engineering, Shanxi University, 2017
24 Garg, A. and Khandelwal, V., “Combination of spatial domain filters for speckle noise reduction in ultrasound medical images,” Advances in Electrical and Electronic Engineering, vol. 15, no. 5, pp. 857–865, 2018.
25 J. Zhang, C. Wang, and Y. Cheng, “Comparison of despeckle filters for breast ultrasound images,” Circuits, Systems, and Signal Processing, pp. 1–24, 2014.
26 Hu, Z., Tang, J., Lei, L, "Comparison of several speckle reduction techniques for 3D Ultrasound Images." In: Proceeding of IEEE International Conference on System, Man, Cybernetics, Hungary (2016)
27 田玲,“眼科高頻超聲成像中斑點噪聲抑制算法的研究,”碩士學位論文, 北京協和醫學院生物醫學工程, 2016
28 王凱,“基于各向异性扩散的超声图像斑点噪声去除算法的研究,”碩士學位論文,蘭州大學电子与通信工程, 2014
29 WANG Ya-qiang, CHEN Bo,” Improved anisotropic diffusion ultrasound image denoising algorithm[J],” Chinese Journal of Liquid Crystals and Displays, 2015, 30(2): 310-316
30 L. H. Breivik, S. R. Snare, E. N. Steen, and A. H. S. Solberg, “Real-time nonlocal means-based despeckling,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 64, no. 6, pp. 959–977, Jun. 2017.
31 Rishu Gupta, I. Elamvazuthi, Ibrahima Faye, P. Vasant, and J George,” Comparative Analysis of Anisotropic Diffusion and Non Local Means on Ultrasound Images,” Journal of Machine to Machine Communications Vol: 1 Issue: 1, January 2014.
32 A. Foi and G. Boracchi, “Foveated self-similarity in nonlocal image filtering,” Proc. SPIE, vol. 8291, p. 829110, Jan. 2012.
33 A. Foi and G. Boracchi, “Foveated nonlocal self-similarity,” Int. J. Comput. Vis., vol. 120, no. 1, pp. 78–110, 2016.
34 C. Curcio, K. Sloan, R. Kalina, and A. Hendrickson, "Human photoreceptor topography," J. Comparative Neurology 292, pp. 497-523, 1990.
35 B. A. Wandell, "Foundations of Vision," Sinauer Associates, Inc., 1995.
36 M. P. Eckstein, "Visual search: A retrospective," Journal of Vision 11(5), 2011
37 H. Kolb, “Simple Anatomy of the Retina by Helga Kolb,” http://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/ (2011, last access on March 30, 2016.).
38 O. V. Michailovich and A. Tannenbaum, “Despeckling of medical ultrasound images,” IEEE Trans. Ultrason., Ferroelect., Freq., Control, vol. 53, no. 1, pp. 64–78, Jan. 2006\
39 O. Michailovich and D. Adam, “A novel approach to the 2- D blind deconvolution problem in medical ultrasound,” IEEE Trans. Med. Imag., vol. 24, pp. 86–104, Jan. 2005.
40 B. A. J. Angelsen, “Ultrasound Imaging: Waves,” Signals, and Signal Processing. Trondhejm, Norway: Emantec, 2000.
41 S. W. Smith and R. F. Wagner, “Ultrasound speckle size and lesion signal to noise ratio: Verification of theory,” Ultrason. Imag., vol. 6, no. 2, pp. 174–180, 1984
42 D. R. Foster, M. Arditi, F. S. Foster, M. S. Patterson, and J. W. Hunt, “Computer simulations of speckle in B-scan images,” Ultrason. Imag., vol. 5, no. 4, pp. 308–330, 1983.
43 Lin Jhih-Huei and Li Meng-Lin, "Quantitative Ultrasound for Non-Alcoholic Fatty Liver Diagnosis: Feasibility Study, " Master's Thesis, Department of Electrical Engineering, National Tsing Hua University, 2017.
44 O. Mattausch and O. Goksel, “Image-based PSF estimation for ultrasound training simulation,” in Proc. Int. Workshop Simulation Synth. Med. Imag., 2016, pp. 23–33.
45 Chengguang Fan," Research on Approaches for Super-Resolution Imaging Using Ultrasonic Phased Array," Doctoral Dissertation, Instrument Science and Technology Graduate School of National University of Defense Technology Changsha, Hunan, P.R.China October 2014
46 Sheng-Min Huang, Hao-Li Liu, Dai-Wei Li, Meng-Lin Li, “Ultrasonic Nakagami Imaging of High-intensity Focused Ultrasound-induced Thermal Lesions in Porcine Livers: Ex Vivo Study,” Ultrasonic Imaging [01 Jun 2018, 40(5):310-324]
47 Hu, Z., Tang, J., Lei, L.: “Comparison of several speckle reduction techniques for 3D Ultrasound Images.” In: Proceeding of IEEE International Conference on System, Man, Cybernetics, Hungary (2016).
48 H. Chunming, G. Huadong, and W. Changlin, “Edge preservation evaluation of digital speckle filters,” in IGARSS 2002, IEEE Int. Geosci. Remote Sensing Symp., Jun. 2002, vol. 4, pp. 2471–2473, 24-28.
49 H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor, “Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors,” IEEE Trans. Biomed. Eng., vol. 55, no. 9, pp. 2152–2160, Sept. 2008
50 Qiu Y, Sridhar M, Tsou JK, Lindfors KK, Insana MF, "Ultrasonic viscoelasticity imaging of nonpalpable breast tumors: preliminary results," Academic Radiol, 15:1526-33, 2008.
51 M.-T. Tsai, I. C. Lee, Z.-F. Lee, H.-L. Liu, C.-C. Wang, Y.-C. Choia, H.-Y. Chou, and J.-D. Lee, “In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography,” Biomed. Opt. Express 7(5), 1865–1876 (2016).
52 F. P. X. de Fontes, G. A. Barroso, P. Coupé, and P. Hellier, “Real time ultrasound image denoising,” J. Real Time Image Process., vol. 6, no. 1, pp. 15–22, May 2010.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *