|
[1] K. M. Dubas and C. Sylla, “Webcasting/Push Technology on Intranets and Extranets,” Prod. Oper. Manag. Soc., pp. 112–120, Mar. 2001. [2] K. M. Bell, D. N. Bleau, and J. T. Davey, “Push notification service,” US8064896B2, Nov. 22, 2011. [3] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework for performing collaborative filtering,” in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, New York, NY, USA, Aug. 1999, pp. 230–237, doi: 10.1145/312624.312682. [4] H.-T. Cheng et al., “Wide & Deep Learning for Recommender Systems,” in Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, New York, NY, USA, Sep. 2016, pp. 7–10, doi: 10.1145/2988450.2988454. [5] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “DeepFM: A Factorization-Machine based Neural Network for CTR Prediction,” in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, Aug. 2017, pp. 1725–1731, doi: 10.24963/ijcai.2017/239. [6] G. de Souza Pereira Moreira, F. Ferreira, and A. M. da Cunha, “News Session-Based Recommendations using Deep Neural Networks,” in Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems, New York, NY, USA, Oct. 2018, pp. 15–23, doi: 10.1145/3270323.3270328. [7] S. Okura, Y. Tagami, S. Ono, and A. Tajima, “Embedding-based News Recommendation for Millions of Users,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, Aug. 2017, pp. 1933–1942, doi: 10.1145/3097983.3098108. [8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006, doi: 10.1126/science.1127647. [9] J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning,” Genet. Program. Evolvable Mach., vol. 19, no. 1, pp. 305–307, Jun. 2018, doi: 10.1007/s10710-017-9314-z. [10] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” ArXiv14123555 Cs, Dec. 2014, Accessed: Sep. 21, 2020. [Online]. Available: http://arxiv.org/abs/1412.3555. [11] K. Cho et al., “Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, Oct. 2014, pp. 1724–1734, doi: 10.3115/v1/D14-1179. [12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 3104–3112. [13] S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio, “Generating Sentences from a Continuous Space,” in Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, Berlin, Germany, Aug. 2016, pp. 10–21, doi: 10.18653/v1/K16-1002. [14] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” ArXiv14090473 Cs Stat, May 2016, Accessed: Sep. 21, 2020. [Online]. Available: http://arxiv.org/abs/1409.0473. [15] V. Mnih, N. Heess, A. Graves, and koray kavukcuoglu, “Recurrent Models of Visual Attention,” in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 2204–2212. [16] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple Object Recognition with Visual Attention,” ArXiv14127755 Cs, Apr. 2015, Accessed: Sep. 21, 2020. [Online]. Available: http://arxiv.org/abs/1412.7755. [17] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, “DRAW: A Recurrent Neural Network For Image Generation,” in International Conference on Machine Learning, Jun. 2015, pp. 1462–1471, Accessed: Sep. 21, 2020. [Online]. Available: http://proceedings.mlr.press/v37/gregor15.html. [18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014. [19] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by reducing internal covariate shift,” in Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, Lille, France, Jul. 2015, pp. 448–456, Accessed: Sep. 21, 2020. [Online]. [20] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” presented at the Advances in Neural Information Processing Systems 29, Barcelona SPAIN, Jul. 2016, Accessed: Sep. 21, 2020. [Online]. Available: http://arxiv.org/abs/1607.06450. [21] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” J. Mach. Learn. Res., vol. 3, no. Jan, pp. 993–1022, 2003. [22] G. E. Hinton, “Learning distributed representations of concepts,” Amherst, Massachusetts, 1986, vol. 1, pp. 1–12. [23] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Probabilistic Language Model,” J. Mach. Learn. Res., vol. 3, no. Feb, pp. 1137–1155, 2003. [24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” Scottsdale, AZ, USA, Jan. 2013, Accessed: Sep. 21, 2020. [Online]. Available: http://arxiv.org/abs/1301.3781. [25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed Representations of Words and Phrases and their Compositionality,” in Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 3111–3119. [26] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors for Word Representation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, Oct. 2014, pp. 1532–1543, doi: 10.3115/v1/D14-1162. [27] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for Efficient Text Classification,” in Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Valencia, Spain, Apr. 2017, pp. 427–431, Accessed: Sep. 21, 2020. [Online]. Available: https://www.aclweb.org/anthology/E17-2068. [28] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with Subword Information,” Trans. Assoc. Comput. Linguist., vol. 5, pp. 135–146, 2017, doi: 10.1162/tacl_a_00051. [29] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learning Word Vectors for 157 Languages,” presented at the LREC 2018, Miyazaki, Japan, May 2018, Accessed: Sep. 21, 2020. [Online]. Available: https://www.aclweb.org/anthology/L18-1550. [30] S. Junyi, fxsjy/jieba. 2020. [31] S. Ruder, “An Overview of Multi-Task Learning in Deep Neural Networks,” ArXiv170605098 Cs Stat, Jun. 2017, Accessed: Sep. 21, 2020. [Online]. Available: http://arxiv.org/abs/1706.05098. [32] A. M. Dai and Q. V. Le, “Semi-supervised Sequence Learning,” in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, Cambridge, MA, USA, Dec. 2015, pp. 3079–3087, Accessed: Sep. 21, 2020. [Online]. [33] Zeng, Chenglin, Laizhong Cui, and Zhi Wang. "An Exponential Time-Aware Recommendation Model for Mobile Notification Services." Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham, 2017. [34] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, Jun. 2006, doi: 10.1016/j.patrec.2005.10.010. [35] Y. Sasaki, “The truth of the F-measure,” p. 5, Oct. 2007. [36] J.-W. Li et al., “Interactome-transcriptome analysis discovers signatures complementary to GWAS Loci of Type 2 Diabetes,” Sci. Rep., vol. 6, p. 35228, Oct. 2016, doi: 10.1038/srep35228. [37] Le, Quoc, and Tomas Mikolov. "Distributed representations of sentences and documents." International conference on machine learning. 2014. [38] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
|