帳號:guest(3.142.199.22)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳俊錡
作者(外文):Chen, Chun-Chi
論文名稱(中文):隨機互聯系統中在具有時變延遲耦合和外部干擾之下的強健分散式追蹤控制設計:隨機極小極大H_∞賽局方法
論文名稱(外文):Robust Decentralized Tracking Control Design of Interconnected Stochastic Systems with Time-Varying Delay Couplings and External Disturbance: Stochastic Minimax H_∞ Game Approach
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):李柏坤
林志民
韓傳祥
邱偉育
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061600
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:27
中文關鍵詞:分散式追蹤控制線性矩陣不等式問題極小極大H_∞賽局大規模系統
外文關鍵詞:Decentralized tracking controllinear matrix inequality problem (LMIP)minimax H_∞ stochastic gamelarge-scale system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:300
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文利用minimax H_∞ 隨機博弈策略,提出了一種新穎的強健分散式模型追蹤控制設計架構,用於線性和非線性在具有外部干擾和其他子系統間的時變延遲耦合情況下的大規模隨機互聯系統。所提出用於強健分散式模型追蹤控制的隨機minimax H_∞博弈策略中,從保守的觀點來看,外部干擾以及與子系統間的耦合被比擬為會惡化子系統追蹤性能的一個玩家,而當子系統的控制器被認為是另一個玩家時,從隨機H_∞博弈論的觀點可以最小化它們對追蹤性能最糟情況的影響。通過所提出的minimax H_∞隨機博弈策略,可以有效地衰減外部干擾和來自其他子系統的時變延遲耦合對模型追蹤的最壞情況影響。並且,可以實現對於每個子系統的強健分散式H_∞模型追蹤。在線性隨機互聯系統中,基於minimax H_∞ 博弈策略的角度,強健分散式追蹤控制設計轉變為求解在線性矩陣不等式(LMIs)的最佳化問題。在非線性隨機互聯系統中,設計minimax H_∞分散式追蹤控制時,我們需要先解決Hamilton-Jacobi Isaacs不等式(HJIIs)的最佳化問題。基於全局線性化(Global Linearization)技術,HJIIs的最佳化問題可以轉化為LMIs最佳化問題,用於非線性隨機互聯系統的強健分散式追蹤控制。最後,給出了three-machine power system貨物搬運過程的模擬例子,說明了所提出的強健分散式追蹤架構的有效性。
In this study, using a minimax H_∞ stochastic game strategy, a novel robust decentralized model reference tracking control design is proposed for linear and nonlinear stochastic interconnected large-scale systems with external disturbance and time-varying delay couplings from other subsystems. In the proposed stochastic minimax H_∞ game strategy for robust decentralized model reference tracking control, to be on the safe side, external disturbance and time-varying delay couplings from other subsystems are considered as one player to deteriorate the tracking performance of each subsystem as fully as possible when the controller of the subsystem is considered as the other player to minimize their worst-case effects on the tracking performance from the stochastic H_∞ game perspective. By the proposed minimax H_∞ stochastic game strategy, the worst-case effect of external disturbance and time-varying delay couplings from other subsystems on the model reference tracking could be efficiently attenuated. Then, the robust decentralized H_∞ model reference tracking for each subsystem could be achieved. In the linear stochastic interconnected system, the robust decentralized tracking control design based on the minimax H_∞ game strategy becomes a linear matrix inequalities (LMIs)-constrained optimization problem. In the nonlinear stochastic interconnected system, we need to solve a Hamilton-Jacobi Isaacs inequalities (HJIIs)-constrained optimization problem for the minimax H_∞ decentralized tracking control design. Based on the global linearization technique, the HJIIs-constrained optimization problem could be transformed to an LMIs-constrained optimization problem for the robust decentralized tracking control of nonlinear stochastic interconnected system. Finally, a simulation example of three-machine power system is given to illustrate the effectiveness of the proposed robust decentralized tracking scheme in the shipping process of goods delivery.
摘要 ---------------------------------- i
Abstract ------------------------------ ii
Content ------------------------------- iii
I.Introduction ------------------------ 1
II.Problem Formulation and Robust Decentralized Model Reference Tracking Control Design for Linear Stochastic Interconnected Systems ------------------------------- 3
III.Robust Decentralized Model Reference Tracking Control Design for Nonlinear Stochastic Interconnected Network Systems ------------------------------------------------- 8
IV.Simulation Example ----------------- 13
V.Conclusion -------------------------- 17
Appendix A ---------------------------- 18
Appendix B ---------------------------- 20
Appendix C ---------------------------- 21
Appendix D ---------------------------- 23
Appendix E ---------------------------- 25
References ---------------------------- 27
[1] D. D. Siljak, Large-scale dynamic systems: Stability and Structure. North-Holland, 1978.
[2] L. T. Gruji’c and D. D. Siljak, “Asymptotic Stability and Instability of Large Scale Systems,” IEEE Trans. Automatic Contr., vol. AC-18, pp. 636–645, 1973.
[3] J. Lavaei, “Decentralized Implementation of Centralized Controllers for Interconnected Systems,” IEEE Trans. Automat. Contr., vol. 57, no. 7, pp.1860-1865, Jul. 2012.
[4] M. Jamshidi, Large-Scale Systems: Modeling and Control. New York: Elsevier, 1983.
[5] D.D. Siljak and A.I. Zecevic, “Control of Large-Scale Systems: Beyond Decentralized Feedback,” Annu. Rev. Contr., vol. 29, no. 2, pp. 169-179, Dec. 2005.
[6] L. Bakule, “Decentralized Control: An Overview,” Annu. Rev. Contr., vol. 32, no. 1, pp. 87-98, Apr. 2008.
[7] D. R. Liu, D. Wang and H. L. Li, “Decentralized Stabilization for a Class of Continuous-Time Nonlinear Interconnected Systems Using Online Learning Optimal Control Approach,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 2, pp. 418-428, Feb. 2014.
[8] C. S. Tseng and B. S. Chen, “H∞ Decentralized Fuzzy Model Reference Tracking Control Design for Nonlinear Interconnected Systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 6, pp. 795-809, Dec. 2001.
[9] R. Ortega and A. Herrera, “A Solution to the Decentralized Adaptive Stabilization Problem,” Syst. Control Lett., vol. 20, pp. 299–306, Feb. 1992.
[10] J. T. Spooner and K. M. Passino, “Adaptive Control of a Class of Decentralized Nonlinear System,” IEEE Trans. Autom. Contr., vol. 41, no. 2, pp. 280–284, Feb. 1996.
[11] S. N. Huang, K. K. Tan and T. H. Lee, “Decentralized Control of a Class of Large-Scale Nonlinear Systems Using Neural Networks,” Automatica, vol. 41, no. 9, pp. 1645-1649, Sep. 2005.
[12] M. Benyakhlef and L. Radouane, “Adaptive Fuzzy Control of a Class for Decentralized Nonlinear Systems and Unknown Dynamics,” Contr. Intell. Syst., vol. 35, no. 1, pp. 60-65, Jan. 2007.
[13] F. P. Da, “Decentralized Sliding Mode Adaptive Controller Design Based on Fuzzy Neural Networks for Interconnected Uncertain Nonlinear Systems,” IEEE Trans. Neural Netw., vol. 11, no. 6, pp. 1471-1480, Nov. 2000.
[14] S. Jain and F. Khorrami, “Decentralized Adaptive Output Feedback Design for Large-Scale Nonlinear Systems,” IEEE Trans. Autom. Contr., vol. 42, no. 5, pp. 729–735, May 1997.
[15] Z. P. Jiang, F. Khorrami and D. Hill, “Decentralized Disturbance Attenuating Output-Feedback Control for Large-Scale Nonlinear Systems,” Automatica, vol. 38, no. 8, pp. 1407–1415, Aug. 2002.
[16] B. Oksendal A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd ed. Berlin, Germany: Springer, 2007.
[17] F. Hanson, Applied Stochastic Process and Control for Jump-Diffusions: Modeling, Analysis and Computation, 2nd ed. Philadelphia, PA, USA: SIAM, 2007.
[18] R. Khasminskii and G. N. Milstein, Stochastic Stability of Differential Equations, 2nd ed. Berlin, Germany: Springer-Verlag, 2011.
[19] B. S. Chen, W. H. Chen and H. L. Wu, “Robust H2/H∞ Global Linearization Filter Design for Nonlinear Stochastic Systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 7, pp. 1441-1454, Jul. 2009.
[20] B. S. Chen, C. L. Tsai and Y. F. Chen, “Mixed H2/H∞ Filtering Design in Multirate Transmultiplexer Systems: LMI Approach,” IEEE Trans. Signal Process., vol. 49, pp. 2693–2701, Nov. 2001.
[21] J. C. Huang and B. S. Chen, “Genetic Algorithm Approach to Fixed-Order Mixed H2/H∞ Optimal Deconvolution Filter Designs,” IEEE Trans. Signal Process., vol. 48, no. 12, pp. 3451–3461, Dec. 2000.
[22] B. S. Chen, C. S. Tseng and H. J. Uang, “Fuzzy Differential Game for Nonlinear Stochastic Systems: Suboptimal Approach,” IEEE Trans. Fuzzy Syst., vol. 10, no. 22, pp. 222–233, Apr. 2002.
[23] B. S. Chen and C. H. Yeh, “Stochastic Noncooperative and Cooperative Evolutionary Game Strategies of a Population of Biological Network Under Natural Selection,” BioSystems., no. 162, pp. 90–118, Dec. 2017.
[24] P. Frihauf, M. Krstic and T. Basar, “Nash Equilibrium Seeking in Noncooperative Games,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp. 1192–1207, May. 2012.
[25] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd ed. New York, NY, USA: Academic, 1982.
[26] C. S. Tseng, B. S. Chen, and H. J. Uang, “Fuzzy Tracking Control Design for Nonlinear Dynamic Systems via T–S Fuzzy Model,” IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 381–392, Jan. 2001.
[27] B. S. Chen and W. Zhang, “Stochastic H2/H∞ Control with State Dependent Noise,” IEEE Trans. Autom. Control, vol. 49, no. 1, pp. 45–57, Jan. 2004.
[28] S. Boyd et al., Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 1994.
[29] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox. Natick, MA: MathWorks, 1995.
[30] B. S. Chen, W. Y. Chen, C. T. Young and Z. G. Yan, “Noncooperative Game Strategy in Cyber-Financial Systems with Wiener and Poisson Random Fluctuations: LMIs-Constrained MOEA Approach,” IEEE Trans. Cybern, vol. 48, no. 12, pp. 3323–3336, Oct. 2018.
[31] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, New York, NY, USA: Wiley, 2001.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *