帳號:guest(3.145.55.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝宛庭
作者(外文):Hsieh, Wan-Ting
論文名稱(中文):條件對比嵌入網路: 透過元資訊學習輔助磁振造影特徵向量的學習
論文名稱(外文):A Condition-Contrastive Embedding Network: Using Meta Information to Guide MRI Representation Learning
指導教授(中文):李祈均
指導教授(外文):Lee, Chi-Chun
口試委員(中文):彭旭霞
吳恩賜
陳煥宗
口試委員(外文):Peng, Hsu-Hsia
Goh, Oon Soo Joshua
Chen, Hwann-Tzong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061577
出版年(民國):109
畢業學年度:107
語文別:英文
論文頁數:52
中文關鍵詞:功能性磁振造影特徵向量學習人臉識別能力失智症
外文關鍵詞:fMRIrepresentation learningface perception abilitydementia
相關次數:
  • 推薦推薦:0
  • 點閱點閱:220
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
近年來功能性核磁共振造影在理解人類行為的領域中成為一股潮流,神經科學方面的研究也顯示透過條件限制的腦活動可用來解釋人類的身心狀態或是行為的表現。同時隨著深度學習技術的發展,工程中開始利用磁振造影的特徵向量進行人類行為辨識以及疾病預測。然而,在學習特徵向量的過程中往往忽略了元資訊對磁振造影訊號所帶來的影響,換言之,神經科學所使用的限制條件(例如刺激物的設計或是行為量表結果)在磁振造影的訊號處理時被忽略了。為了解決這個問題,本研究提出條件對比嵌入網路以將這些額外卻重要的資訊融入在我們的架構中,一同學習更全面的特徵向量。透過此方法,我們在臉部識別能力辨識任務以及失智症辨識任務中都有較高的準確率,且透過視覺化、t-test、重要樞紐偵測等分析,我們發現對任務而言的重要腦區資訊也一同被學習在特徵向量中。
Functional Magnetic Resonance Imaging (fMRI) has recently become a trend for understanding human behavior. Researches from neuroscience have demonstrated that brain activation under certain condition shown in fMRI could explain the external behavior status and performance. With the advent of deep learning, computational works are conducted to fulfill the disease detection or behavior prediction using representation derived from fMRI. However, the previous works may ignore what meta information, i.e., stimuli manipulation and behavior performance, has brought into fMRI signal during the representation learning process. In this study, we propose a Condition-Contrastive Embedding Network (CCEN) to incorporate meta information into our architecture to learn a more comprehensive representation. We experiment this method on two tasks: Face Perception Ability Recognition and Dementia Classification Task, where we found better predicting performance using the representation learned from CCEN framework. Furthermore, through visualization, t-test and hub alteration detection analysis, we discover that the information of key brain regions is simultaneously embedded in our learned representation.
摘要 I
ABSTRACT II
誌謝 III
CONTENTS IV
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 FACE PERCEPTION ABILITY RECOGNITION 5
2.1 INTRODUCTION 5
2.2 DATABASE 8
2.2.1 fMRI Acquisition and Processing 9
2.2.2 Face Perception and Memory Assessments 11
2.2.2.1 Taiwanese Face and Memory Test (TFMT) 11
2.2.2.2 Component Task 11
2.3 RESEARCH METHODOLOGY 12
2.3.1 Graph Embedding Techniques 13
2.3.2 Event-Contrastive Connectome Network (E-cCN) 15
2.3.2.1 Graph Construction 15
2.3.2.2 Graph Embedding of Functional Connectivity 15
2.3.2.3 Contrastive Loss Embedded Network 16
2.4 EXPERIMENTS AND RESULTS 17
2.4.1 Experimental Settings 17
2.4.2 Network Configuration 18
2.4.3 Recognition Results 18
2.4.4 Brain Connectome Visualization 21
CHAPTER 3 DEMENTIA CLASSIFICATION TASK 23
3.1 INTRODUCTION 23
3.2 DATABASE 27
3.2.1 Resting-State fMRI Acquisition and Processing 28
3.2.2 DTI Acquisition and Processing 29
3.2.3 Neuropsychological Assessment 30
3.2.3.1 CDR 30
3.2.3.2 MMSE 30
3.2.3.3 MoCA 31
3.3 RESEARCH METHODOLOGY 31
3.3.1 Behavior Score-Embedded Encoder Network (BSEN) 31
3.3.1.1 The Convolutional Autoencoder (ModelAE) 32
3.3.1.2 The Contrastive Center Loss Model (ModelC) 32
3.3.1.3 Dementia Classification and Fusion Technique 33
3.4 EXPERIMENTS AND RESULTS 34
3.4.1 Experimental Settings 34
3.4.2 Network Configuration 35
3.4.3 Recognition Results of Rs-fMRI Database 36
3.4.4 Recognition Results of DTI Database 38
3.4.5 Statistical Analysis of Rs-fMRI Database 41
3.4.6 Nodal Efficiency Analysis of DTI Database 43
CHAPTER 4 CONCLUSION 47
REFERENCE 48

[1] Arthurs, Owen J., and Simon Boniface. "How well do we understand the neural origins of the fMRI BOLD signal?." Trends in neurosciences 25.1 (2002): 27-31.
[2] Ashby, F. Gregory. "An introduction to fMRI." An introduction to model-based cognitive neuroscience. Springer, New York, NY, 2015. 91-112.
[3] Kanwisher, Nancy, Josh McDermott, and Marvin M. Chun. "The fusiform face area: a module in human extrastriate cortex specialized for face perception." Journal of neuroscience 17.11 (1997): 4302-4311.
[4] Goveas, Joseph S., et al. "Recovery of hippocampal network connectivity correlates with cognitive improvement in mild Alzheimer's disease patients treated with donepezil assessed by resting‐state fMRI." Journal of Magnetic Resonance Imaging34.4 (2011): 764-773.
[5] Li, Xiaoxiao, et al. "2-channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning." 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018.
[6] Nie, Dong, et al. "3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2016.
[7] Yan, Weizheng, et al. "Discriminating schizophrenia from normal controls using resting state functional network connectivity: A deep neural network and layer-wise relevance propagation method." 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2017.
[8] Mao, Zhenyu, et al. "Spatio-temporal deep learning method for ADHD fMRI classification." Information Sciences 499 (2019): 1-11.
[9] Qi, Ce, and Fei Su. "Contrastive-center loss for deep neural networks." 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017.
[10] Ajzen, Icek. "Attitudes, traits, and actions: Dispositional prediction of behavior in personality and social psychology." Advances in experimental social psychology. Vol. 20. Academic Press, 1987. 1-63.
[11] Davis, Tim RV, and Fred Luthans. "A social learning approach to organizational behavior." Academy of Management Review 5.2 (1980): 281-290.
[12] Haxby, James V., Elizabeth A. Hoffman, and M. Ida Gobbini. "Human neural systems for face recognition and social communication." Biological psychiatry 51.1 (2002): 59-67.
[13] Hutchings, Rosalind, et al. "Disrupted face processing in frontotemporal dementia: a review of the clinical and neuroanatomical evidence." Neuropsychology review 27.1 (2017): 18-30.
[14] Van Rheenen, Tamsyn E., et al. "Configural and Featural Face Processing Influences on Emotion Recognition in Schizophrenia and Bipolar Disorder." Journal of the International Neuropsychological Society 23.3 (2017): 287-291.
[15] Duchaine, Brad, and Ken Nakayama. "Dissociations of face and object recognition in developmental prosopagnosia." Journal of cognitive neuroscience 17.2 (2005): 249-261.
[16] Duchaine, Brad, and Ken Nakayama. "The Cambridge Face Memory Test: Results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants." Neuropsychologia 44.4 (2006): 576-585.
[17] Maurer, Daphne, Richard Le Grand, and Catherine J. Mondloch. "The many faces of configural processing." Trends in cognitive sciences 6.6 (2002): 255-260.
[18] Lynn, Andrew C., et al. "Functional connectivity differences in autism during face and car recognition: underconnectivity and atypical age‐related changes." Developmental science 21.1 (2018): e12508.
[19] Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2016.
[20] Cheng, Ya-Hsin, Gary Chon-Wen Shyi, and Kuan-Hao Cheng. "Age Differences in Face Memory and Face Processing Between Younger and Older Adults in Taiwan." Chinese Journal of Psychology 58.4 (2016): 233-262.
[21] Shyi, G. C. W., S. T. Huang, and C. Y. Yeh. "Taiwan corpora of Chinese emotions and relevant psychophysiological data—A college-student database of facial expression for basic emotions." Chinese Journal of Psychology 55 (2013): 455-475.
[22] Penny, William D., et al., eds. Statistical parametric mapping: the analysis of functional brain images. Elsevier, 2011.
[23] Fox, Christopher J., Giuseppe Iaria, and Jason JS Barton. "Defining the face processing network: optimization of the functional localizer in fMRI." Human brain mapping 30.5 (2009): 1637-1651.
[24] Townsend, James T., and F. Gregory Ashby. "Methods of modeling capacity in simple processing systems." Cognitive theory. Psychology Press, 2014. 211-252.
[25] Wang, Daixin, Peng Cui, and Wenwu Zhu. "Structural deep network embedding." Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2016.
[26] Luo, Dijun, et al. "Cauchy graph embedding." Proceedings of the 28th International Conference on Machine Learning (ICML-11). 2011.
[27] Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014.
[28] Tang, Jian, et al. "Line: Large-scale information network embedding." Proceedings of the 24th international conference on world wide web. International World Wide Web Conferences Steering Committee, 2015.
[29] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781(2013).
[30] Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.
[31] Rossion, Bruno, et al. "A network of occipito‐temporal face‐sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing." Brain 126.11 (2003): 2381-2395.
[32] Collins, Jessica A., and Ingrid R. Olson. "Beyond the FFA: the role of the ventral anterior temporal lobes in face processing." Neuropsychologia 61 (2014): 65-79.
[33] Onor, M. L., et al. "Different perception of cognitive impairment, behavioral disturbances, and functional disabilities between persons with mild cognitive impairment and mild Alzheimer’s disease and their caregivers." American Journal of Alzheimer's Disease & Other Dementias® 21.5 (2006): 333-338.
[34] Rombouts, Serge ARB, et al. "Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study." Human brain mapping 26.4 (2005): 231-239.
[35] Mathuranath, P. S., et al. "A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia." Neurology 55.11 (2000): 1613-1620.
[36] Khachaturian, Zaven S. "Diagnosis of Alzheimer's disease." Archives of neurology 42.11 (1985): 1097-1105.
[37] Zou, Qi-Hong, et al. "An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF." Journal of neuroscience methods 172.1 (2008): 137-141.
[38] Wang, Liang, et al. "Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI." Neuroimage 31.2 (2006): 496-504.
[39] Wang, Zhiqun, et al. "Changes in thalamus connectivity in mild cognitive impairment: evidence from resting state fMRI." European journal of radiology 81.2 (2012): 277-285.
[40] Alexander, Andrew L., et al. "Diffusion tensor imaging of the brain." Neurotherapeutics 4.3 (2007): 316-329.
[41] Kochunov, P., et al. "Fractional anisotropy of water diffusion in cerebral white matter across the lifespan." Neurobiology of aging33.1 (2012): 9-20.
[42] Naggara, Olivier, et al. "Diffusion tensor imaging in early Alzheimer's disease." Psychiatry Research: Neuroimaging 146.3 (2006): 243-249.
[43] Bozzali, M., et al. "White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging." Journal of Neurology, Neurosurgery & Psychiatry 72.6 (2002): 742-746.
[44] Medina, David, et al. "White matter changes in mild cognitive impairment and AD: a diffusion tensor imaging study." Neurobiology of aging 27.5 (2006): 663-672.
[45] Duan, Jin-Hai, et al. "White matter damage of patients with Alzheimer’s disease correlated with the decreased cognitive function." Surgical and Radiologic Anatomy 28.2 (2006): 150-156.
[46] Fellgiebel, Andreas, et al. "Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment." Neurobiology of aging 26.8 (2005): 1193-1198.
[47] Stricker, Nikki H., et al. "Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer's disease supports retrogenesis." Neuroimage 45.1 (2009): 10-16.
[48] Mielke, Michelle M., et al. "Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease." Neuroimage 46.1 (2009): 47-55.
[49] Liu, Yawu, et al. "Diffusion tensor imaging and tract-based spatial statistics in Alzheimer's disease and mild cognitive impairment." Neurobiology of aging 32.9 (2011): 1558-1571.
[50] Khazaee, Ali, et al. "Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI." Behavioural brain research 322 (2017): 339-350.
[51] Luo, Suhuai, Xuechen Li, and Jiaming Li. "Automatic Alzheimer’s disease recognition from MRI data using deep learning method." Journal of Applied Mathematics and Physics 5.09 (2017): 1892.
[52] Wang, Yan, et al. "A Novel Multimodal MRI Analysis for Alzheimer's Disease Based on Convolutional Neural Network." 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018.
[53] Lin, Shih-Yen, et al. "Multiparametric graph theoretical analysis reveals altered structural and functional network topology in Alzheimer's disease." NeuroImage: Clinical 22 (2019): 101680.
[54] Yan, Chaogan, and Yufeng Zang. "DPARSF: a MATLAB toolbox for" pipeline" data analysis of resting-state fMRI." Frontiers in systems neuroscience 4 (2010): 13.
[55] Agosta, Federica, et al. "Resting state fMRI in Alzheimer's disease: beyond the default mode network." Neurobiology of aging 33.8 (2012): 1564-1578.
[56] Wang, Kun, et al. "Altered functional connectivity in early Alzheimer's disease: A resting‐state fMRI study." Human brain mapping 28.10 (2007): 967-978.
[57] Beaulieu, Christian. "The basis of anisotropic water diffusion in the nervous system–a technical review." NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo 15.7‐8 (2002): 435-455.
[58] Houenou, J., et al. "Increased white matter connectivity in euthymic bipolar patients: diffusion tensor tractography between the subgenual cingulate and the amygdalo-hippocampal complex." Molecular psychiatry 12.11 (2007): 1001.
[59] Achard, Sophie, and Ed Bullmore. "Efficiency and cost of economical brain functional networks." PLoS computational biology 3.2 (2007): e17.
[60] Lo, Chun-Yi, et al. "Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer's disease." Journal of Neuroscience 30.50 (2010): 16876-16885.
[61] Foundas, Anne L., et al. "Atrophy of the hippocampus, parietal cortex, and insula in Alzheimer's disease: a volumetric magnetic resonance imaging study." Neuropsychiatry, Neuropsychology, & Behavioral Neurology (1997).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 透過語音特徵建構基於堆疊稀疏自編碼器演算法之婚姻治療中夫妻互動行為量表自動化評分系統
2. 基於健保資料預測中風之研究並以Hadoop作為一種快速擷取特徵工具
3. 一個利用人類Thin-Slice情緒感知特性所建構而成之全時情緒辨識模型新框架
4. 應用多任務與多模態融合技術於候用校長演講自動評分系統之建構
5. 基於多模態主動式學習法進行樣本與標記之間的關係分析於候用校長評鑑之自動化評分系統建置
6. 透過結合fMRI大腦血氧濃度相依訊號以改善語音情緒辨識系統
7. 結合fMRI之迴旋積類神經網路多層次特徵 用以改善語音情緒辨識系統
8. 針對實體化交談介面開發基於行為衡量方法於自閉症小孩之評估系統
9. 一個多模態連續情緒辨識系統與其應用於全域情感辨識之研究
10. 整合文本多層次表達與嵌入演講屬性之表徵學習於強健候用校長演講自動化評分系統
11. 利用聯合因素分析研究大腦磁振神經影像之時間效應以改善情緒辨識系統
12. 利用LSTM演算法基於自閉症診斷觀察量表訪談建置辨識自閉症小孩之評估系統
13. 利用多模態模型混合CNN和LSTM影音特徵以自動化偵測急診病患疼痛程度
14. 以雙向長短期記憶網路架構混和多時間粒度文字模態改善婚 姻治療自動化行為評分系統
15. 透過表演逐字稿之互動特徵以改善中文戲劇表演資料庫情緒辨識系統
 
* *