帳號:guest(3.135.188.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張彤誠
作者(外文):Chang, Tung-Cheng.
論文名稱(中文):應用於高帶寬自旋力矩轉移- 磁阻式隨機存取記憶體巨集之低峰值電流多位元電流感測放大器
論文名稱(外文):A Low Peak Current Multi-bit Current Sense Amplifier for High Bandwidth STT-MRAM Macro
指導教授(中文):張孟凡
指導教授(外文):Chang, Meng-Fan
口試委員(中文):洪浩喬
謝志成
邱瀝毅
口試委員(外文):Hong, Hao-Chiao
Hsieh, Chih-Cheng
Chiou, Lih-Yih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061542
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:74
中文關鍵詞:非揮發性記憶體高帶寬自旋力矩轉移- 磁阻式隨機存取記憶體電流感測放大器
外文關鍵詞:Non-volatile memoryHigh bandwidthSTT-MRAMCurrent sense amplifier
相關次數:
  • 推薦推薦:0
  • 點閱點閱:428
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有許多具有安全意識的移動設備,使用安全散列算法(SHA)或進階加密標準(AES)功能進行數據加密,通常需要較短的讀取時間(TAC)和搭配wide-IO的非揮發性記憶體(NVM)以實現高讀取帶寬功能。自旋力矩轉移-磁阻式隨機存取記憶體(STT-MRAM)是主要用於先進製程節點的on-chip非揮發性記憶體。但是,它需要具備小偏移量的感測放大器才能在較小的穿隧式磁阻比例(TMR-Ratio)進行穩定的讀取,因此需要以大量的面積消耗和讀取能量(ERD)作為代價。設計一個安全相關的自旋力矩轉移-磁阻式隨機存取記憶體巨集主要面臨兩個挑戰:
1. 使用大量數目的感測放大器進行平行wide-IO讀取可實現較短的讀取時間,但會導致峰值電流(IPEAK)提高和大量面積消耗。若使用較少數目的感測放大器進行序列的Wide-IO讀取可減少高峰值電流和面積消耗,但會導致較長的讀取時間且較低的讀取帶寬。
2. 具有較高峰值電流的自旋力矩轉移-磁阻式隨機存取記憶體巨集會降低晶片的電源穩定性,可能會導致同一晶片上對雜訊敏感的區塊出現故障。
本文主要討論自旋力矩轉移-磁阻式隨機存取記憶體在高帶寬讀取中的出現的問題,並提出了一種多位元電流感測放大器(MB-CSA),該放大器具有電流欲度增強、製程變異容忍、小面積、低峰值電流、低能耗的特性,解決了在前面自旋力矩轉移-磁阻式隨機存取記憶體高帶寬巨集中提到的問題。
在台積電22 奈米製程分析下,我們提出的讀取架構相較於傳統電流感測放大器可多容忍70%的穿隧式磁阻比例。此外,減少的參考電流數量使多位元電流感測放大器的功耗相較於傳統電流感測放大器降低了53.3%,峰值電流降低了43.8%,而僅付出22.2%讀取速度的代價,與傳統電流感測放大器(並行感測)相比,在1024個輸出位元中每位元消耗的能量降低了43%。
最後,在台積電22奈米 CMOS工藝中製造的1Mb 自旋力矩轉移-磁阻式隨機存取記憶體巨集中驗證了我們提出的方案,本文的1Mb巨集在VDD = 0.85伏特時,讀取速度 = 2.75奈秒(ns),在所有已發表的非揮發性記憶體中,該晶片的讀取帶寬為最高值(42.67GB/s)和最低讀取能量(0.23pJ/b),最大輸出位元為1024比特。
Many security-aware mobile devices, using Secure Hash Algorithm (SHA) or Advanced Encryption Standard (AES) functions for data encryption, require short read access time (TAC) and wide-IO from nonvolatile memory (NVM) for high read bandwidth function. Spin Torque Transfer- Magnetoresistive Random Access Memory (STT-MRAM) is the major on-chip NVM for advanced process nodes; however, it requires small-offset sense amplifiers (SAs) for robust read against small TMR-ratio at the expense of large area overhead and read-energy (ERD). Designing STT-MRAM macros for security-related applications imposes two main challenges:
1. Using a large number of SAs for parallel wide-IO readout achieves short TAC, but results in high peak current (IPEAK) and large area overhead. Using fewer SAs for sequential wide-IO readout reduces IPEAK and area overhead, but imposes long TAC and low read-bandwidth (BWR);
2. MRAM macros with high IPEAK degrade the supply (VDD) integrity of the chip, often leading to failure in noise-sensitive blocks on the same chip;
In this thesis, we discuss the issues in high bandwidth reading especially with STT-MRAM, and proposed a Multi-bit current sense amplifier (MB-CSA), which is featured with margin enhancement, offset suppression, small area, low peak current, and low energy consumption capability to solve the problems mentioned before in STT-MRAM high bandwidth macro.
Under tsmc 22 nm technology analysis, our proposed work achieves >70% lower tolerance on TMR-ratio than conventional sensing scheme. Moreover, the reduced number of IREF allows for an MB-CSA with 53.3% reduction in power consumption and 43.8% reduction in peak current with TAC overhead of only 22.2%, resulting in a 43% energy/bit reduction, compared to conventional read schemes (parallel sensing) for 1024b-IO.
Finally, our proposed scheme is verified in a 1Mb STT-MRAM macro fabricated in TSMC 22nm CMOS process, the proposed 1Mb macro demonstrated the largest number of data-out operations (DOUT=1024b) with TAC=2.75ns at VDD=0.85V, this device outperformed all reported NVM macros in terms of BWR (42.67GB/s) and ERD (0.23pJ/b).
致謝 ii
摘要 iii
Abstract v
Contents vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 The Role of Memory in SoC products 1
1.2 Memory Hierarchy 2
1.3 Challenges of Flash Memory 5
1.4 Emerging Non-Volatile Memories 8
Chapter 2 Characteristic of STT-MRAM 12
2.1 Introduction of MRAM 12
2.2 Read and Write Operations of STT-MRAM 14
2.3 Recent Development of STT-MRAM 17
Chapter 3 Design Challenges of STT-MRAM 21
3.1 Design Challenges 21
3.1.1 Threshold Voltage in Process 21
3.1.2 Issues of STT-MRAM 23
3.2 Structures and Operations of Conventional Sensing Schemes 24
3.3 Previous Small Offset Current Sense Amplifiers 26
3.4 Application of High Bandwidth Combined with NMC 32
Chapter 4 Proposed Circuits and Analysis 33
4.1 Motivation and Concept of Proposed Read Scheme 33
4.1.1 Pre-precharge and Sequential Sensing 35
4.1.2 Structure of Proposed MB-CSA 37
4.1.3 Operations of Proposed Sense Amplifier 38
4.2 Analyses and Comparison 50
4.2.1 Tolerance of Low TMR-Ratio and Sensing Yield 50
4.2.2 CSA Performance Comparison 53
4.2.3 Read Access Time Analyses 54
4.2.4 Comparison Table of Recent CSAs 55
4.2.5 Macro Level Read Bandwidth Analysis 56
Chapter 5 Measurement Result and Conclusion 57
5.1 STT-MRAM Macro Implementation 57
5.2 Design for Test 58
5.3 Measurement results 61
5.4 Conclusions and Future Work 65
Reference 67
[1] Kiyoo Itoh, Takayasu Sakurai, “VLSI Memory Chip Design”, Springer-Verlag, NY, pp. 1-46, 2001.
[2] M. Bohr, "The new era of scaling in an SoC world," 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2009, pp. 23-28.
[3] F. Menichelli and M. Olivieri, "Static Minimization of Total Energy Consumption in Memory Subsystem for Scratchpad-Based Systems-on-Chips," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 2, pp. 161-171, Feb. 2009.
[4] D. Smith, J. Zeiter, T. Bowman, J. Rahm, B. Kertis, A. Hall, S. Natan, L. Sanderson, R. Tromp, J. Tsang, “A 3.6ns 1Kb ECL I/O BiCMOS U.V. EPROM,” IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1987-1990, May 1990.
[5] C. Kuo et al., "A 512-kb flash EEPROM embedded in a 32-b microcontroller," in IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 574-582, Apr 1992.
[6] S. H. Kulkarni, Z. Chen, J. He, L. Jiang, M. B. Pedersen and K. Zhang, "A 4 kb Metal-Fuse OTP-ROM Macro Featuring a 2 V Programmable 1.37um2 1T1R Bit Cell in 32 nm High-k Metal-Gate CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 863-868, April 2010.
[7] Y. H. Tsai et al., "45nm Gateless Anti-Fuse Cell with CMOS Fully Compatible Process," 2007 IEEE International Electron Devices Meeting, Washington, DC, 2007, pp. 95-98.
[8] Webfeet Inc., “Semiconductor industry outlook,” Non-Volatile Memory Conference, Santa Clara, CA., 2002
[9] Sang Lyul Min and Eyee Hyun Nam, "Current trends in flash memory technology," Asia and South Pacific Conference on Design Automation, 2006., Yokohama, 2006
[10] F. Masuoka, M. Momodomi, Y. Iwata and R. Shirota, "New ultra high density EPROM and flash EEPROM with NAND structure cell," 1987 International Electron Devices Meeting, 1987, pp. 552-555.
[11] A. Bergemont, H. Haggag, L. Anderson, E. Shacham and G. Wolstenholme, "NOR virtual ground (NVG)-a new scaling concept for very high density flash EEPROM and its implementation in a 0.5 um process," Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 1993, pp. 15-18.
[12] R. F. Freitas and W. W. Wilcke, “Storage-class memory: The next storage system
technology,” IBM Journal of Research and Development, vol. 52, no. 4-5, pp. 439-447,July 2008.
[13] R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, "Introduction to Flash Memory," Proceeding of the IEEE, vol. 91, Issue 4, pp. 489-502, April 2003.
[14] Y. Koh, “NAND Flash Scaling beyond 20nm,” IEEE Internstional Memory Workshop, pp. 1-3, May 2009.
[15] K. Prall, “Scaling Non-Volatile Memory Below 30nm,” IEEE Non-Volatile Semiconductor Memory Workshop, pp. 5-10, Aug. 2007.
[16] S. Lee, "Scaling Challenges in NAND Flash Device toward 10nm Technology," IEEE International Memory Workshop, pp. 1-4, May 2012.
[17] H. Maejima et al., "A 512Gb 3b/Cell 3D flash memory on a 96-word-line-layer technology," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 336-338.
[18] C. Deml, M. Jankowski and C. Thalmaier, "A 0.13μm 2.125MB 23.5ns Embedded Flash with 2GB/s Read Throughput for Automotive Microcontrollers," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 478-617.
[19] M. Sako et al., "7.1 A low-power 64Gb MLC NAND-flash memory in 15nm CMOS technology," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
[20] C. H. Hung et al., "Layer-Aware Program-and-Read Schemes for 3D Stackable Vertical-Gate BE-SONOS NAND Flash Against Cross-Layer Process Variations," in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1491-1501, June 2015.
[21] D. Kang et al., "256Gb 3b/cell V-NAND flash memory with 48 stacked WL layers," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 130-131, Feb. 2016.
[22] H. Noguchi et al., "A 3.3ns-access-time 71.2μW/MHz 1Mb embedded STT-MRAM using physically eliminated read-disturb scheme and normally-off memory architecture," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 136-137.
[23] H. Noguchi et al., "4Mb STT-MRAM-based cache with memory-access-aware power optimization and write-verify-write / read-modify-write scheme," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 132-133, Feb. 2016.
[24] G. De Sandre et al., "A 90nm 4Mb embedded phase-change memory with 1.2V 12ns read access time and 1MB/s write throughput," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 268-269.
[25] D. Takashima, Y. Nagadomi and T. Ozaki, "A 100MHz Ladder FeRAM Design with Capacitance-Coupled-Bitline (CCB) Cell," IEEE Symposium on VLSI Circuits Digest of Technical Papers, pp. 227-228, June 2010.
[26] W. Otsuka et al., "A 4Mb conductive-bridge resistive memory with 2.3GB/s read-throughput and 216MB/s program-throughput," 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 210-211.
[27] K. Aratani et al., "A Novel Resistance Memory with High Scalability and Nanosecond Switching," 2007 IEEE International Electron Devices Meeting, Washington, DC, 2007, pp. 783-786.
[28] K. Rho et al., "A 4Gb LPDDR2 STT-MRAM with compact 9F2 1T1MTJ cell and hierarchical bitline architecture," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 396-397
[29] J. C. S. Kools, "Exchange-biased spin-valves for magnetic storage," in IEEE Transactions on Magnetics, vol. 32, no. 4, pp. 3165-3184, Jul 1996.
[30] S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi and M. DeHerren, "Progress and outlook for MRAM technology," in IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 2814-2819, Sep 1999.
[31] S. Tehrani et al., "Recent developments in magnetic tunnel junction MRAM," in IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 2752-2757, Sep 2000.
[32] K. C. Chun, H. Zhao, J. D. Harms, T. H. Kim, J. P. Wang and C. H. Kim, "A Scaling Roadmap and Performance Evaluation of In-Plane and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory," in IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 598-610, Feb. 2013.
[33] Alexander Driskill-Smith, "New Samsung Open Innovation Program For STT-MRAM Technology - An Interview With Alexander Driskill-Smith" AZO Materials Sep, 2013
[34] M. Hosomi et al., "A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., Washington, DC, 2005, pp. 459-462.
[35] S. W. Chung et al., "4Gbit density STT-MRAM using perpendicular MTJ realized with compact cell structure," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 27.1.1-27.1.4.
[36] C. Park et al., "Systematic optimization of 1 Gbit perpendicular magnetic tunnel junction arrays for 28 nm embedded STT-MRAM and beyond," 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp. 26.2.1-26.2.4.
[37] H. Noguchi et al., "Novel voltage controlled MRAM (VCM) with fast read/write circuits for ultra large last level cache," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 27.5.1-27.5.4.
[38] Y. J. Song et al., "Highly functional and reliable 8Mb STT-MRAM embedded in 28nm logic," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 27.2.1-27.2.4.
[39] J. M. Slaughter et al., "Technology for reliable spin-torque MRAM products," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 21.5.1-21.5.4.
[40] S. Song et al., "CMOS device scaling beyond 100 nm," International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), San Francisco, CA, USA, 2000, pp. 235-238.
[41] Jean-Pierre Colinge, Cynthia A. Colinge, “Physics of Semiconductior Devices.” Springer-Verlag, NY, pp. 175-182, 2002.
[42] E. Morifuji et al., "A 1.5 V high performance mixed signal integration with indium channel for 130 nm technology node," International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), San Francisco, CA, USA, 2000, pp. 459-462.
[43] C. H. Shih, Y. M. Chen and C. Lien, "Effect of insulated shallow extension for the improved short-channel effect of sub-100 nm MOSFET," International Semiconductor Device Research Symposium, pp. 158-159, Dec. 2003.
[44] S. Severi et al., "Diffusion-less junctions and super halo profiles for PMOS transistors formed by SPER and FUSI gate in 45 nm physical gate length devices," IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., 2004, pp. 99-102.
[45] M. F. Chang et al., "An offset-tolerant current-sampling-based sense amplifier for Sub-100nA-cell-current nonvolatile memory," 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 206-208.
[46] M. Jefremow et al., "Time-differential sense amplifier for sub-80mV bitline voltage embedded STT-MRAM in 40nm CMOS," 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 216-217.
[47] C. Kim, et al., “A covalent-bonded cross-coupled current-mode sense amplifier for STT-MRAM with 1T1MTJ common source-line structure array,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 1-3, 2015.
[48] Q. Dong, et al., “A 1Mb embedded NOR flash memory with 39µW program power for mm-scale high-temperature sensor nodes,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 198-199, 2017.
[49] W. H. Chen et al., "A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN AI edge processors," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 494-496.
[50] B. Giridhar, N. Pinckney, D. Sylvester and D. Blaauw, "13.7 A reconfigurable sense amplifier with auto-zero calibration and pre-amplification in 28nm CMOS," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 242-243.
[51] Yi-Chun Shih et al.,, " Logic Process Compatible 40nm 16Mb, Embedded Perpendicular-MRAM with Hybrid-Resistance Reference, sub-μA Sensing Resolution, and 17.5nS Read Access Time," IEEE Symposium on VLSI Circuits Digest of Technical Papers , June 2018.
[52] G. Hu et al., "Key parameters affecting STT-MRAM switching efficiency and improved device performance of 400°C-compatible p-MTJs," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 38.3.1-38.3.4.
[53] Q. Dong, et al., “A 1Mb 28nm STT-MRAM with 2.8ns Read Access Time at 1.2V VDD Using Single-Cap Offset-Cancelled Sense Amplifier and In-situ Self-Write-Termination,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 480-481, 2018.
[54] L. Wei, et al., “A 7Mb STT-MRAM in 22FFL FinFET Technology with 4ns Read Sensing Time at 0.9V Using Write-Verify-Write Scheme and Offset-Cancellation Sensing Technique,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 214-215, 2019.
[55] C. X. Xue, et al., “A 1Mb Multibit ReRAM Computing-In-Memory Macro with 14.6ns Parallel MAC Computing Time for CNN-Based AI Edge Processors,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 388-389, 2019.
[56] C. Deml, et al., “A 0.13μm 2.125MB 23.5ns Embedded Flash with 2GB/s Read Throughput for Automotive Microcontrollers,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 478-479, 2007.
[57] D. Kang, et al., “A 512Gb 3-bit/Cell 3D 6th-Generation V-NAND Flash Memory with 82MB/s Write Throughput and 1.2Gb/s Interface,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 216-217, 2019.
[58] N. Shibata, et al., “A 1.33Tb 4-bit/Cell 3D-Flash Memory on a 96-Word-Line-Layer Technology,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 210-211, 2019.
[59] Y. Taito, et al., “A 28nm Embedded SG-MONOS Flash Macro for Automotive Achieving 200MHz Read Operation and 2.0MB/s Write Throughput at Tj of 170°C,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 132-133, 2015.
[60] Q. Dong, et al., “A 1Mb Embedded NOR Flash Memory with 39μW Program Power for mm-Scale High-Temperature Sensor Nodes,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 198-199, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *