|
[1] V. Blanz, T. Vetter, et al. A morphable model for the synthesis of 3D faces. In Proc. ACM SIGGRAPH, 1999. [2] Z. Shu, E. Yumer, S. Hadap, K. Sunkavalli, E. Shechtman, and D. Samaras. Neural face editing with intrinsic image disentangling. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. [3] J.-C. Chen, V. M. Patel, and R. Chellappa. Unconstrained face verification using deep cnn features. In Proc. IEEE Winter Conf. Appl. Comput. Vis., pages 1–9, 2016. [4] S. Chen, Y. Liu, X. Gao, and Z. Han. Mobilefacenets: Efficient CNNs for accurate real-time face verification on mobile devices. In Proc. Chinese Conf. Biometric Recognit., pages 428–438, 2018. [5] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. Stargan: Unified generative adversarial networks for multidomain image-to-image translation. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 8789–8797, 2018. [6] F. Cole, D. Belanger, D. Krishnan, A. Sarna, I. Mosseri, and W. T. Freeman. Synthesizing normalized faces from facial identity features. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 3703–3712, 2017. [7] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Classbalanced loss based on effective number of samples. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 9268– 9277, 2019. [8] J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 3150–3158, 2016. [9] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 4690– 4699, 2019. [10] G. D. Finlayson, S. D. Hordley, and M. S. Drew. Removing shadows from images. In Proc. European Conf. Comput. Vis., pages 823–836, 2002. [11] I. Gross, R.and Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-pie. Image Vis. Comput., 28(5):807–813, 2010. [12] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of Wasserstein GANs. In Proc. Adv. Neural Inf. Proc. Syst., pages 5767–5777, 2017. [13] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. MS-celeb-1m: A dataset and benchmark for large-scale face recognition. In Proc. European Conf. Comput. Vis., pages 87–102, 2016. [14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 770–778, 2016. [15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. [16] Y. Hu, X. Wu, B. Yu, R. He, and Z. Sun. Pose-guided photorealistic face rotation. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 8398–8406, 2018. [17] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. 2008. [18] R. Huang, S. Zhang, T. Li, and R. He. Beyond face rotation: Global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In Proc. IEEE Int. Conf. Comput. Vis., pages 2439–2448, 2017. [19] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 1125–1134, 2017. [20] D. Kinga and J. B. Adam. A method for stochastic optimization. In Proc. Int. Conf. Learn. Represent., volume 5, 2015. [21] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A. Mah, and A. K. Jain. Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 1931–1939, 2015. [22] E. H. Land and J. J. McCann. Lightness and retinex theory. Josa, 61(1):1–11, 1971. [23] T. Li, R. Qian, C. Dong, S. Liu, Q. Yan, W. Zhu, and L. Lin. Beautygan: Instance-level facial makeup transfer with deep generative adversarial network. In Proc. ACM Multimedia, pages 645–653, 2018. [24] Y. Lu, Y.-W. Tai, and C.-K. Tang. Attribute-guided face generation using conditional CycleGAN. In Proc. European Conf. Comput. Vis., pages 282–297, 2018. [25] I. Masi, S. Rawls, G. Medioni, and P. Natarajan. Pose-aware face recognition in the wild. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 4838–4846, 2016. [26] Y. Qian, W. Deng, and J. Hu. Unsupervised face normalization with extreme pose and expression in the wild. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 9851–9858, 2019. [27] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015. [28] S. Sengupta, J.-C. Chen, C. Castillo, V. M. Patel, R. Chellappa, and D. W. Jacobs. Frontal to profile face verification in the wild. In Proc. IEEE Winter Conf. Appl. Comput. Vis., pages 1–9, 2016. [29] W. Shen and R. Liu. Learning residual images for face attribute manipulation. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 4030–4038, 2017. [30] Y. Shen, P. Luo, J. Yan, X. Wang, and X. Tang. FaceIDGAN: Learning a symmetry three-player GAN for identitypreserving face synthesis. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 821–830, 2018. [31] L. Tran, X. Yin, and X. Liu. Disentangled representation learning GAN for pose-invariant face recognition. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 1415–1424, 2017. [32] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu. CosFace: Large margin cosine loss for deep face recognition. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 5265–5274, 2018. [33] Y. Wang, L. Zhang, Z. Liu, G. Hua, Z. Wen, Z. Zhang, and D. Samaras. Face relighting from a single image under arbitrary unknown lighting conditions. IEEE Trans. Pattern Anal. Mach. Intell., 31(11):1968–1984, 2008 [34] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from scratch. arXiv preprint arXiv:1411.7923, 2014. [35] X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker. Towards large-pose face frontalization in the wild. In Proc. IEEE Int. Conf. Comput. Vis., pages 3990–3999, 2017. [36] Z. Zhang, X. Chen, B. Wang, G. Hu, W. Zuo, and E. R. Hancock. Face frontalization using an appearance-flow-based convolutional neural network. IEEE Trans. Image Process., 28(5):2187–2199, 2018. [37] J. Zhao, Y. Cheng, Y. Xu, L. Xiong, J. Li, F. Zhao, K. Jayashree, S. Pranata, S. Shen, J. Xing, et al. Towards pose invariant face recognition in the wild. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 2207–2216, 2018. [38] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired imageto-image translation using cycle-consistent adversarial networks. In Pro. IEEE Int. Conf. Comput. Vis., pages 2223–2232, 2017. [39] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li. Face alignment across large poses: A 3D solution. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 146–155, 2016. [40] X. Zhu, Z. Lei, J. Yan, D. Yi, and S. .Z Li. High-fidelity pose and expression normalization for face recognition in the wild. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 787–796, 2015. [41] Y. A. Mejjati, C. Richardt, J. Tompkin, D. Cosker, and K. I.Kim. Unsupervised attention-guided image-to-image trans-lation. InProc. Adv. Neural Inf. Proc. Syst., pages 3693–3703, 2018. [42] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014. [43] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. InProc. Adv. Neural Inf. Proc. Syst.,pages 2672–2680, 2014. [44] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, and David W Ja-cobs. Deep single-image portrait relighting. InProceedingsof the IEEE International Conference on Computer Vision,pages 7194–7202, 2019. [45] D. J. Jobson, Z. Rahman, and G. A. Woodell. A multiscaleretinex for bridging the gap between color images and thehuman observation of scenes.IEEE Trans. Image Proc.,6(7):965–976, 1997. [46] R. Basri and D. W. Jacobs. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):218–233, 2003. [47] . Hassner, S. Harel, E. Paz, and R. Enbar. Effective face frontalization in unconstrained images. InProc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 4295–4304, 2015. [48] S. Sengupta, A. Kanazawa, C. D. Castillo, and D. Jacobs. SfSNet: Learning shape, reflectance and illuminance of faces in the wild. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
|