|
[1] O. Otto, J. Garofalo, K. K. Low, C.-M. Yuan, R. Henderson, C. Pierrat, R. Kostelak, S. Vaidya, and P. K. Vasudev. Automated optical proximity correction: a rules-based approach. In Optical/Laser Microlithography VII, volume 2197, pages 278–294. International Society for Optics and Photonics, 1994. [2] T.-J. Hsu. Optical proximity correction (opc) method for improving lithography process window, Feb. 27 2001. US Patent 6,194,104. [3] Synopsys, Inc. https://www.synopsys.com/. [4] K. Aberman, J. Liao, M. Shi, D. Lischinski, B. Chen, and D. Cohen-Or. Neural best-buddies: sparse cross-domain correspondence. ACM Trans. Graphics, 37(4):69, 2018. [5] T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and A. A. Efros. Learning dense correspondence via 3d-guided cycle consistency. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 117–126, 2016. [6] H. Peng, P. Chung, F. Long, L. Qu, A. Jenett, A. M. Seeds, E. W. Myers, and J. H. Simpson. Brainaligner: 3d registration atlases of Drosophila brains. Nature methods, 8(6):493, 2011. [7] H.-C. Shao, C.-C. Wu, G.-Y. Chen, H.-M. Chang, A.-S. Chiang, and Y.-C. Chen. Developing a stereotypical Drosophila brain atlas. IEEE Transactions on Biomedical Engineering, 61(12):2848–2858, 2014 [8] M.-H. Hung, T.-H. Lin, F.-T. Cheng, and R.-C. Lin. A novel virtual metrology scheme for predicting cvd thickness in semiconductor manufacturing. IEEE/ASME Trans. Mechatronics, 12(3):308–316, 2007. [9] H. Purwins, B. Barak, A. Nagi, R. Engel, U. H¨ockele, A. Kyek, S. Cherla, B. Lenz, G. Pfeifer, and K. Weinzierl. Regression methods for virtual metrology of layer thickness in chemical vapor deposition. IEEE/ASME Trans. Mechatronics, 19(1):1–8, 2014. [10] A. Poonawala and P. Milanfar. Mask design for optical microlithographyan inverse imaging problem. IEEE Trans. Image Process., 16(3):774–788, 2007. [11] D. Z. Pan, B. Yu, and J.-R. Gao. Design for manufacturing with emerging nanolithography. IEEE Trans. Comput. Aided Design Integ. Circuits Syst., 32(10):1453–1472, 2013. [12] L. Cao, J. Zhang, D. N. Power, and E. S. Parent. Prediction of process-sensitive geometries with machine learning, Nov. 8 2018. US Patent App. 15/588,984. [13] A. B. Kahng. Reducing time and effort in ic implementation: a roadmap of challenges and solutions. In 2018 55th ACM/ESDA/IEEE Design Autom. Conf., pages 1–6. IEEE, 2018. [14] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young. GAN-OPC: Mask optimization with lithography-guided generative adversarial nets. In Proc. ACM/ESDA/IEEE Design Autom. Conf., pages 1–6. IEEE, 2018. [15] W. Ye, M. B. Alawieh, Y. Lin, D. Z. Pan. LithoGAN: End-to-End Lithography Modeling with Generative Adversarial Networks. ACM/IEEE Design Automation Conference (DAC), 2019. [16] B. Y. Yu, Y. Zhong, S. Y. Fang, H. F. Kuo. Deep Learning-Based Framework for Comprehensive Mask Optimization. Asia and South Pacific Design Automation Conference (ASP-DAC), 2019 [17] Y. Watanabe, T. Kimura, T. Matsunawa, and S. Nojima, Accurate lithography simulation model based on convolutional neural networks, in SPIE Advanced Lithography. International Society for Optics and Photonics, 2017, pp. 101 470K–101 470K. [18] A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method. Artech house, 2005. [19] K. D. Lucas, H. Tanabe, and A. J. Strojwas, Efficient and rigorous three-dimensional model for optical lithography simulation. Journal of the Optical Society of America A, vol. 13, no. 11, pp. 2187–2199, 1996. [20] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 1125–1134, 2017. [21] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages 8798–8807, 2018. [22] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. In Proc. Adv. Neural Inf. Process. Syst., pages 700–708, 2017. [23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Proc. Adv. Neural Inf. Process. Syst., pages 2672–2680, 2014. [24] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013. [25] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proc. IEEE Int. Conf. Comput. Vis., pages 2223– 2232, 2017. [26] Z. Yi, H. Zhang, P. Tan, and M. Gong. Dualgan: Unsupervised dual learning for image-to-image translation. In Proc. IEEE Int. Conf. Comput. Vis., pages 2849–2857, 2017. [27] M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. In Proc. Adv. Neural Inf. Process. Syst., pages 469– 477, 2016. [28] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal unsupervised image-to-image translation. In Proc. European Conf. Comput. Vis., pages 172–189, 2018. [29] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, MOSAIC: Mask optimizing solution with process window aware inverse correction. in Proc. DAC, 2014, pp. 52:1–52:6. [30] A. H. Gabor, J. A. Bruce,W. Chu, R. A. Ferguson, C. A. Fonseca, R. L. Gordon, K. R. Jantzen, M. Khare, M. A. Lavin, W. Lee, L. W. Liebmann, K. P. Muller, J. H. Rankin, P. Varekamp, and F. X. Zach, Subresolution assist feature implementation for high-performance logic gate-level lithography. in Proceedings of SPIE, vol. 4691, pp. 418–425, 2002. [31] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In Proc. Adv. Neural Inf. Process. Syst., pages 2017–2025, 2015. [32] C. Wang, H. Zheng, Z. Yu, Z. Zheng, Z. Gu, and B. Zheng. Discriminative region proposal adversarial networks for high-quality image-to-image translation. In Proc. European Conf. Comput. Vis., pages 770–785, 2018. [33] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13(4):600–612, 2004. [34] N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern., 9(1):62–66, 1979. |