帳號:guest(3.142.199.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):龔士瑋
作者(外文):Kung, Shih-Wei
論文名稱(中文):具超電容儲能支撐雙向三相切換式整流器供電之開關式磁阻馬達驅動系統
論文名稱(外文):BIDIRECTIONAL THREE-PHASE SWITCH-MODE RECTIFIER FED SWITCHED-RELUCTANCE MOTOR DRIVE WITH SUPERCAPACITOR ENERGY STORAGE SUPPORT
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):劉添華
徐國鎧
胡國英
口試委員(外文):Liu, Tian-Hua
Shyu, Kuo-Kai
Hwu, Kuo-Ing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061511
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:90
中文關鍵詞:開關式磁阻馬達切換式整流器直流/直流轉換器換相增壓電壓控制電流控制速度控制超電容
外文關鍵詞:Switched-reluctance motorswitch-mode rectifierDC/DC convertercommutationvoltage boostingvoltage controlcurrent controlspeed controlsuper-capacitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:97
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
本論文旨在開發具功率型儲能支撐之開關式磁阻馬達系統,由市電經一雙向切換式整流器供電,藉由超電容經介面轉換器介接在直流鏈,改善其能源供給品質及使用率。首先,建立數位訊號處理器為主非對稱橋式轉換器供電之基本開關式磁阻馬達驅動系統,配合得宜設計之感測、換相及控制架構,具良好驅控特性。以此為主,進一步應用換相移位及增壓技巧,增進馬達於高速及/或高載下之性能。
其次,設計建構一雙向升壓型三相切換式整流器。在仔細分析電流漣波後,設計其儲能電感。並妥善設計其組成之控制器,在有良好調控之直流鏈電壓下,亦具良好之交流入電品質。接著建構雙向三相切換式整流器供電之開關式磁阻馬達驅動系統。除其良好之馬達驅動性能外,於成功之再生煞車操作下,回收之儲存動能可成功回送市電。
接著,開發一超電容儲能系統介接至直流鏈,作為開關式磁阻馬達之能源緩衝。為更深入了解超電容能源轉換特性,實測了所用超電容之關鍵參數。次之,建構一升/降壓直流轉換器,透過適當設計的電路及控制器,使超電容具有良好的充放電特性。
最後,從事整體具超電容儲能支撐開關式磁阻馬達驅動系統之總體操控,其操控性能由一些實測驗結果驗證之。
This thesis develops a switched-reluctance motor (SRM) drive with power type energy storage support. The SRM is powered from the mains by a bidirectional switch-mode rectifier (SMR). Its energy supplying quality and utilization are improved by the equipped supercapacitor at the DC-link. First, a digital signal processor (DSP) based elementary SRM drive is established. The asymmetric bridge converter with proper current control pulse-width modulated (PWM) scheme is constructed. Good driving characteristics are achieved with properly designed sensing, commutation, and control schemes. Under higher speed and/or heavier load, the commutation shifting and voltage boosting are further properly applied to enhance the driving performance.
Next, a three-phase bidirectional boost SMR is designed and implemented. After making detailed current ripple analysis, the energy storage inductor is designed. And through the properly designed constituted controllers, under well regulated DC output voltage, satisfactory line-drawn power quality is preserved simultaneously. Then a three-phase bidirectional SMR powered SRM drive is developed and evaluated. Except for satisfactory motor driving characteristics, successful regenerative braking operation is also achieved with the stored kinetic energy being sent back to the mains.
Third, a supercapacitor energy storage system is developed and used to provide an energy buffer for the SRM drive at its DC-link. To understand the energy conversion response characteristics of a supercapacitor, the key parameters of the employed supercapacitor bank are measured. Then the boost-buck DC/DC interface converter is constructed. Through proper designs of power circuits and controllers, the established supercapacitor possesses good charging and discharging characteristics.
Finally, the operation control of the whole SRM drive with supercapacitor energy storage buffer is conducted, and some measured results are presented to demonstrate its performance.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES x
LIST OF SYMBOLS xi
LIST OF ABBREVIATION xvii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BASICS OF SWITCHED-RELUCTANCE MOTOR AND ENERGY STORAGE SYSTEM 5
2.1 Introduction 5
2.2 Switched-reluctance Motors 5
2.3 Interface Converters 12
2.4 Some Key Issues of SMR-fed SRM Drive 16
2.5 Energy Storage Devices 16
2.6 Applications of Supercapacitor Energy Storage 17
CHAPTER 3 ELEMENTARY SWITCHED-RELUCTANCE MOTOR DRIVE 21
3.1 Introduction 21
3.2 System Configuration 21
3.3 The Employed Switched-Reluctance Motor 21
3.4 Digital Control Environment 26
3.5 Control Schemes 29
CHAPTER 4 SWITCH-MODE RECTIFIER POWERED SWITCHED- RELUCTANCE MOTOR DRIVE 36
4.1 Introduction 36
4.2 Power Circuit of Three-phase Full-bridge Boost SMR 36
4.3 Control Schemes of Three-phase Full-bridge Boost SMR 43
4.4 Experimental Verification under Resistive Load 48
4.5 SRM Drive with Three-phase Full-bridge SMR Front-end 50
4.6 Efficiency Assessment of the Employed SRM 57
CHAPTER 5 SWITCHED-RELUCTANCE MOTOR DRIVE WITH SUPERCAPACITOR ENERGY STORAGE SUPPORT 65
5.1 Introduction 65
5.2 System configuration 65
5.3 Key Parameter Estimation of the Employed Supercapacitor 65
5.3.1 Common Models of Supercapacitor 65
5.3.2 The Employed Supercapacitor 65
5.3.3 Capacitance Measurement 67
5.4 Supercapacitor Interface Converter 69
5.4.1 System Configuration 69
5.4.2 Circuit Components 70
5.5 SC Energy Support Discharging Characteristics 80
CHAPTER 6 CONCLUSIONS 83
REFERENCES 84

A. SRM Basics
[1] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2014.
[2] Z. Y., F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[3] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[4] K. F. Chou M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[5] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[6] K. Koinuma, K. Aiso, and K. Akatsu,“A novel self-cooling SRM for electric hand tools,” in Proc. IEEE ECCE, 2018, pp. 6116-6120.
[7] J. W. Jiang, B. Bilgin, and A. Emadi, “Three-phase 24/16 switched reluctance machine for a hybrid electric powertrain,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 76-85, 2017.
[8] M. M. Namazi, S. M. S. Nejad, A. Tabesh, A. Rashidi, and M. Liserre, “Passivity-based control of switched reluctance-based wind system supplying constant power load,” IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9550-9560, 2018.
[9] P. J. D. Santos Neto, T. A. D. Santos Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind system,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, 2018.
[10] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kw switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, 2017.
[11] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[12] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas, “Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
[13] P. C. Desai, M. Krishnamurthy, N. Schofield, and Ali Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010.
[14] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate, “SRM converter topologies for EV application: State of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
B. Converters Circuits
[15] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
[16] M. Ehsani, J. T. Bass, T. J. E. Miller, and R. L. Steigerwald, “Development of a unipolar converter for variable reluctance motor drives,” IEEE Trans. Ind. Appl., vol. IA-23, no. 3, pp. 545-553, 1992.
[17] D. H. Lee and J. W. Ahn, “A novel four-level converter and instantaneous switching angle detector for high speed SRM drive,” in IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2034-2041, 2007.
[18] T. Nonaka, Y. Nakazawa, K. Ohyama, H. Fujii, H. Uehara, and Y. Hyakutake, “Inverter improving motor efficiency of switched reluctance motor for electric vehicle,” in Proc. EPE-PEMC, 2013, pp. 1-8.
[19] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: a comparative analysis,” IEEE Trans. Transport. Electrific. pp. 1-6, 2014.
[20] F. Peng, J. Ye, and A. Emadi, “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp.8618-8631, 2017.
[21] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate, “SRM converter topologies for EV application: State of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
[22] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[23] S. Ebrahimi, V. Najmi, S. Ebrahimi, and H. Oraee, “A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches,” in Proc. IEEE ACEMP, 2011, pp. 125-128.
[24] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” in Proc. IEEE Elect. Power Appl., 1993, vol. 140, no. 5, pp. 316-322.
[25] K.R. Geldhof, T.J. Vyncke, F.M.L.L. De Belie, L. Vandevelde, J.A.A. Melkebeek and R.K. Boel “Embedded Runge-Kutta methods for the integration of a current control loop in an SRM dynamic finite element model,” IET Sci. Meas. Technol., vol. 1, no. 1, pp. 17-20, 2007.
[26] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[27] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[28] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[29] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
C. Modeling and Parameter Estimation of SRM
[30] K. I. Hwu, “Development of a switched reluctance motor drive,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[31] B. P. Loop and S. D. Sudoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
[32] M. Ayaz and A. B. Yildiz, “An equivalent circuit model for switched reluctance motor,” in Proc. IEEE MELCON, 2006, pp. 1182-1185.
[33] V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro, and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, 2014.
[34] J. Dong, B. Howey, B. Danen, J. Lin, J. W. Jiang, B. Bilgin, and A. Emadi, “Advanced dynamic modeling of three-phase mutually coupled switched reluctance machine,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 146-154, 2018.
D. Commutation Instant Tuning
[35] M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[36] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[37] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[38] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEEE Proc. Elec. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
[39] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[40] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[41] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched-reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, 2016.
[42] H. N. Huang, K. W. Hu, and C. M. Liaw, “A switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current,” IET Elec. Power Appl., vol. 11, no. 4, pp. 640-652, 2017.
[43] C. Y. Ho, J. C. Wang, K. W. Hu, and C. M. Liaw, “Development and operation control of a switched-reluctance motor driven flywheel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 526-537, 2019.
E. Current Control
[44] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[45] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[46] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Elec. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[47] H. Makino, T. Kosaka, and N. Matsui, “Control performance comparisons among three types of instantaneous current profiling technique for SR motor,” IET Proc. PEMD, pp. 1-6, 2014.
[48] I. Manolas, G. Papafotiou, and S. N. Manias, “Sliding mode PWM for effective current control in switched reluctance machine drives,” in Proc. IEEE IPEC, 2014, pp. 1606-1612.
[49] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” IEEE Trans. Power Electron, vol. 3, no. 2, pp. 381-394, 2015.
F. Speed Control
[50] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[51] C. Lucas, M.M. Shanehchi, P. Asadi, and P.M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS., vol. 3, pp. 1573-1577, 2000.
[52] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IET Proc. Electric Power Appl., vol. 148, no. 4, pp. 345-352, 2001.
[53] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[54] A. Karami-Mollaee, “Sliding mode control of switch reluctance motor without chattering,” in Proc. IEEE ICEE, 2013, pp. 1-5.
[55] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[56] S. K. Sahoo, S. K. Panda, and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. IEEE PES, 2007, pp. 1-7.
G. Switch-Mode Rectifiers
[57] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[58] S. H. Li and C. M. Liaw, “Modelling and quantitative direct digital control for a DSP-based soft-switching-mode rectifier,” IEE Proceedings, Electric Power Appl., vol. 150, no. 1, pp. 21-30, 2003.
[59] A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Ćuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873-881, 2011.
[60] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[61] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, Oct. 2011.
[62] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[63] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[64] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems -Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
H. Energy Storage Systems
[65] V. A. Boicea, “Energy storage technologies: the past and the present,” in Proc. IEEE, 2014, vol. 102, no. 11, pp. 1777-1794.
[66] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “An EV SRM drive powered by battery/ supercapacitior with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
[67] H. Miniguano, A. Barrado, C. Raga, A. Lázaro, C. Fernández, and M. Sanz, “A comparative study and parameterization of supercapacitor electrical models applied to hybrid electric vehicles,” IEEE ESARS-ITEC, pp. 1-6, 2016.
[68] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017.
[69] M. O. Badawy, T. Husain, Y. Sozer, and J. A. D. Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53. no. 6, pp. 5810-5819, 2017.
[70] G. Branislav and B. Zoran “The energy saving system with the CAF URBOS 3 of urban public transport in Belgrade,” in MTC AJ, vol. 15, no. 3, pp. 77-83, 2017.
[71] R. Furuta, J. Kawasaki, and K. Kondo, “Hybrid traction technologies with energy storage devices for nonelectrified railway lines,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 291-297, 2010.
[72] P. Arboleya, P. Bidaguren, and U. Armendariz, “Energy is on board: energy storage and other alternatives in modern light railways,” IEEE Electrification Magazine., vol. 4, no. 3, pp. 30- 41, 2016.
[73] T. Ratniyomchai, S. Hillmansen, and P. Tricoli, “Recent developments and applications of energy storage devices in electrified railways,” IET Electr. Syst. Transp. vol. 4, no. 1, 2014.
[74] D. Iannuzzi and P. Tricoli, “Metro trains equipped onboard with supercapacitors: a control technique for energy saving,” in Proc. IEEE SPEEDAM, 2010, pp. 750-756.
[75] S. Tominaga, I. Suga, H. Araki, H. Ikejima, M. Kusuma, and K. Kobayashi, “Development of energy-saving elevator using regenerated power storage system,” in Proc. IEEE PCC- Osaka, 2002, vol. 2, pp. 890-895.
[76] N. Jabbour, C. Mademlis, and I. Kioskeridis, “Improved performance in a supercapacitor- based energy storage control system with bidirectional dc-dc converter for elevator motor drives,” in Proc. IET PEMD, 2014, pp. 1-6.
[77] K. Kafalis and A. D. Karlis, “Comparison of flywheels and supercapacitors for energy saving in elevators,” in Proc. IEEE IAS., 2016, page 1-8.
[78] N. Jabbour and C. Mademlis, “Improved control strategy of a supercapacitor-based energy recovery system for elevator applications,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8398-8408, 2016.
[79] R. G. Lawrence, K. Craven, and G. D. Nichols, “Flywheel UPS,” IEEE Ind. Appl. Mag., vol. 9, no.3, pp. 44-50, 2003.
[80] A. Kusko and J. Dedad, “Short-term and long-term energy storage methods for standby electric power systems,” IEEE Trans. Ind. Appl., vol. 13, no.4, pp. 66-72, 2007.
[81] H. H. Abdeltawab and Y. A. I. Mohamed, “Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid-code constraints,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4242-4254, 2016.
[82] B. H. Kenny, P. E. Kascak, R. Jansen, T. Dever, and W. Santiago “Control of a high-speed flywheel system for energy storage in space applications,” IEEE Trans. Ind. Appl., vol. 41, no. 4, pp. 1029-1038, 2005.
I. Interface Converters
[83] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[84] N. Mohan, T.M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[85] E. Hiraki, K. Hirao, T. Tanaka, and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
[86] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system,” IEEE Trans. Power. Electron., vol. 27, no. 3, pp. 1237-1248, 2012.
[87] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. IEEE ECCE, 2011, pp. 3322-3329.
[88] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Optimal design of a push-pull-forward half-bridge (PPFHB) bidirectional dc–dc converter with variable input voltage,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp.2761-2771, 2012.
[89] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[90] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional dc-dc converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
[91] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrer, “DC microgrids—Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electronics, vol. 31, no. 5, pp.3528-3549, 2016.
[92] A. Mallik and A. Khaligh, “Variable-switching-frequency state-feedback control of a phase-shifted full-bridge DC/DC converter,” IEEE Trans. Power Electron., vol. 32, no. 8, pp.6523-6531, 2017.
[93] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp.9143-9178, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *