帳號:guest(18.118.137.139)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉潔霖
作者(外文):Liu, Chieh-Lin
論文名稱(中文):以換流器端電流控制之三相三線併網型LCL高頻換流器研製與驗證
論文名稱(外文):Development and Verification of High Frequency LCL Three-Phase Three-Wire Grid-Connected Inverter with Inverter-Side Current Control
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):潘晴財
林景源
張淵智
口試委員(外文):Pan, Ching-Tsai
Lin, Jing-Yuan
Chang, Yuan-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061505
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:87
中文關鍵詞:三相三線換流器分切合整數位控制併網型高頻LCL濾波器
外文關鍵詞:three-phase three-wire inverterD-Σ digital control lawgrid-connectedhigh frequencyLCL filter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:447
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究研製高頻三相三線全橋換流器,電力級為三相三線全橋式電路架構,並以RX71M做為控制核心。換流器切換頻率為100 kHz,因此可減少濾波元件之體積,提高功率密度。而併網型換流器的主要功能包含:輸出正實功至電網與特定功率因數之電流輸出,系統將實、虛功依照所需要的比例饋入電網當中,進而達到補償電網電壓以及頻率的效果。
換流器中選用LCL濾波器,可有效的濾除開關切換所造成的高次諧波,比起LC濾波器,在相同的濾波效果下,有效的縮小電感體積。在控制方面使用三相解耦合分切合整直接數位控制,將直流鏈電壓、開關切頻與電感值隨電流衰減考慮進去。三相解耦合分切合整直接數位控制可以準確地計算出下一週期的開關責任比率,其三相表示式為解耦合關係,三相三線換流器也可以等效成三個單相來控制。為避免開關責任比率過度調變,使用零序注入法,相較傳統的abc-dq軸轉換,可以簡化受控體與控制法則的推導,因此解耦合控制,大幅降低控制上的複雜程度。在實作上,首先,利用模擬驗證分切合整數位控制應用於三相三線全橋換流器之可行性,再進行系統的功能實測,驗證換流器的各項功能及控制法之可行性。
本研究的貢獻為:(1)實作一部10 kW高切頻的三相三線全橋換流器,可注入實、虛功於電網。(2)使用三相解耦合分切合整直接數位控制,可以降低控制法則之計算時間,提升控制頻寬。
This research is aimed at designing and implementing a high frequency inverter. A three-phase three-wire full-bridge inverter topology is adopted and the micro-controller Renesas RX71M is chosen as control center of the system. The inverter switching frequency is 100kHz, which reduces the size of the filter components and increases the power density. The main operation of the inverter includes injecting active and reactive power into ac grid by following the command from utility company to compensate grid voltage and frequency. The LCL filter is used in the inverter to effectively filter out the harmonics caused by switching action. Compared with an LC filter, the inductor volume in an LCL filter can be reduced under the same filtering effect.
Decoupled three-phase direct digital control with the division-summation (D-Σ) process is used to control the system. The DC link voltage, switching frequency and inductance variation are taken into account in the control-law derivation. Using decoupled three-phase direct digital control with the D-Σ process can accurately determine the duty ratios of the next cycle. The three-phase expressions are decoupled and the control of a three-phase three-wire inverter can be equivalent to that of a single phase. With the zero sequence injection in control law can avoid duty-ratio over modulation. Comparing with con¬ventional abc to dq frame transformation, control law derivation of the direct digital control can be simplified. With the decoupled control, its complexity is greatly reduced. The feasibility of the three-phase three-wire full-bridge inverter with the decoupled three-phase direct digital control has been verified by simulation. Moreover, it has been verified by hardware measurements from a 10 kW inverter system.
The major contributions of this thesis are: (1) implementing a 10 kW three-phase three-wire full-bridge inverter, and proving that all functions of the full-bridge inverter can be achieved and (2) adopting the decoupled three-phase direct digital control can reduce computation time of the control laws, which in turn, can increase control bandwidth.
摘要 i
Abstract ii
誌謝 iv
總目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1研究背景動機 1
1-2文獻回顧 2
1-2-1換流器架構簡介 2
1-2-2換流器控制法簡介 6
1-3論文大綱 9
第二章 系統架構與控制策略 10
2-1系統架構 10
2-2三相解耦合直接數位控制 11
2-3 LCL濾波器設計[13] 16
2-3-1諧振頻率帶 16
2-3-2諧振頻率 16
2-3-3 LCL參數限制 18
第三章 換流器周邊電路 21
3-1輔助電源 21
3-2驅動電路架構 23
3-2-1緩衝器SN74LVC244 23
3-2-2開關驅動電源 24
3-2-3開關驅動電路 26
3-3電壓/電流回授電路 26
3-3-1直流鏈電壓回授 27
3-3-3市電電壓、濾波電容電壓回授 29
3-4保護電路 29
3-4-2電壓箝位保護電路 31
3-4-3輔助電源偵錯電路 31
3-4-4電網斷開電路 32
3-4-5緊急開關電路 32
第四章 韌體架構與控制流程 34
4-1微控制器RX71M簡介 34
4-2換流器控制流程 39
4-2-1主程式控制流程 39
4-2-2類比/數位中斷副程式流程 40
第五章 電路製作與實測驗證 47
5-1換流器規格與元件 47
5-2實務考量 48
5-2-1電感值變化量 48
5-2-2 高切頻下降低電感體積 50
5-2-3 電感電流回授電路 51
5-2-4 回授線路上延遲修正 53
5-2-5 PWM死區補償 54
5-3 Matlab/Simulink模擬 55
5-4模擬與實測波形比較 59
5-4-1電阻性負載 59
5-4-2電容性負載 65
5-4-3電感性負載 71
5-4-4三相含諧波成分下模擬 77
5-4-5結果分析 78
5-5損耗分析 79
5-5-1電感損耗 79
5-5-2功率開關損耗 81
第六章 結論與未來研究方向 83
6-1結論 83
6-2未來研究方向 84
參考文獻 85
[1] T. V. Thang, A. Ahmed, C. Kim, and J. Park, "Flexible system architecture of stand-alone PV power generation with energy storage device," in IEEE Transactions on Energy Conversion, vol. 30, no. 4, pp. 1386-1396, Dec. 2015.
[2] T. Chmielewski, “Environmental aspects of grid connected power electronic converters control,” Journal of Ecological Engineering, vol. 18, Issue 2, pages 182–191, Mar. 2017.
[3] S. Kouro, J. I. Leon, D. Vinnikov, and L. G. Franquelo, "Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology," in IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 47-61, Mar. 2015.
[4] E. Ortjohann, A. Mohd, N. Hamsic and, M. Lingemann, “Design and experimental investigation of space vector modulation for three-leg four-wire voltage source inverters,” European Conference on Power Electronics and Applications, pp. 1-6, Sep. 2009.
[5] 李俊毅,高功率三相中性點箝位式轉換器研製,國立中正大學電機工程研究所碩士論文,2014年7月。
[6] P. R. Ouyang, V. Pano and T. Dam, "PID contour tracking control in position domain," 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, pp. 1297-1302, 2012.
[7] W. Yu and X. Li, “Stable PID control for robot manipulators with neural compensation,” 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, pp. 5398-5403, 2012.
[8] K. H. Ang, G. Chong and Yun Li, “PID control system analysis, design, and technology,” in IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559-576, Jul. 2005.
[9] 王星翰,具強健性之重複控制器應用於直流至交流轉換器,國立中山大學電機工程學系碩士論文,民國101年8月。
[10] M. S. Khireddine, M. Makhloufi, Y. Abdessemed, and A. Boutarafa, “Tracking power photovoltaic system with a fuzzy logic strategy,” IEEE International Conference on Computer Science and Information Technology, pp. 42-49, Mar. 2014.
[11] G. R. Yu and J. S. Wei, “Fuzzy control of a bi-directional inverter with nonlinear inductance for DC microgrids,” IEEE International Conference on Fuzzy Systems, pp. 1941-1945, Jun. 2011.
[12] S. A. Krishna and L. Abraham, “Boost converter based power factor correction for single phase rectifier using fuzzy logic control,” IEEE International Conference on Computational Systems and Communications, pp. 122-126, Dec. 2014.
[13] T.-F. Wu, M. Misra, L.-C. Lin and C.-W. Hsu, "An improved resonant frequency based systematic lcl filter design method for grid-connected inverter," in IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6412-6421, Aug. 2017.
[14] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL filter-based three-phase active rectifier,” in Conf. Rec. IEEE 36th IAS Annu. Meeting, vol. 1, pp. 299–307, 2001.
[15] Y. Jiao and F. C. Lee, “LCL filter design and inductor current ripple analysis for a three-levelNPCgrid interface converter,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4659–4668, Sep. 2015.
[16] Y. Tang, C. Yoon, R. Zhu, and F. Blaabjerg, “Generalized stability regions of current control for LCL-filtered grid-connected converters without passive or active damping,” in Proc. 2015 IEEE Energy Convers. Congr.Expo., Montreal, QC, Canada, pp. 2040–2047, 2015.
[17] J. Wang and J. D. Yan, “Using virtual impedance to analyze the stability of LCL-filtered grid-connected inverters,” in Proc. 2015 IEEE Int. Conf. Ind. Technol., Seville, Spain, pp. 1220–1225, 2015.
[18] X. Zhang, J. W. Spencer, and J. M. Guerrero, “Small-signal modeling of digitally controlled grid-connected inverters with LCL filters,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3752–3765, Sep. 2013.
[19] Mean Well, RS-35-24 Datasheet, 2018.
[20] ST Microelectronics, VIPER22A Datasheet, 2002.
[21] LEM, LA 55-P Datasheet.
[22] Renesas Electronics, RX71M Group User’s Manual, Dec. 2017.
[23] Chang Sung Corporation, Magnetic Powder Cores.
[24] LEM, HTB 100-P Datasheet.
[25] Texas Instruments, LM6172 Datasheet.
[26] Texas Instruments, TL082 Datasheet.
[27] CREE, C3M0030090K Datasheet.
[28] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, 2014
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *