帳號:guest(3.15.146.43)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高秀慈
作者(外文):Gao, Xiu-Ci
論文名稱(中文):多功能高低頻互補轉換器
論文名稱(外文):Multi-Function Hybrid-Frequency Converters
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):陳建富
余國瑞
林長華
口試委員(外文):Chen, Jiann-Fuh
Yu, Gwo-Ruey
Lin, Chang-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061503
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:103
中文關鍵詞:三相四線式轉換器分切合整數位控制高低頻互補轉換器併網型漣波電流消除多功能轉換器
外文關鍵詞:Three-phase Four-wire ConverterD-Σ Digital ControlHybrid Frequency ConverterGrid ConnectionRipple CancellationMulti-Function Converter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究設計與製作一額定容量10 kVA多功能高低頻互補轉換器,並改善漣波補償效果。此系統包含兩台並聯之三相四線半橋式轉換器,使用微控制器Renesas RX62T晶片做為控制核心。將兩台轉換器操作於不同切換頻率下,低頻轉換器額定功率較高,高頻轉換器額定功率較低,透過高低頻轉換器功率配置,高頻大功率轉換器與系統內對應規格之零件可由低頻大功率和高頻低功率元件取代,並提升等效開關切換頻率、提升動態響應及降低LCL濾波器之體積與重量。本系統能操作在市電併聯模式、整流模式與主動電力濾波模式,在市電併聯模式下,可依照需求輸出實虛功,並符合併網型轉換器電力品質規範;在整流模式下,當直流鏈供電不足時,能將市電轉為直流電供應給直流側負載及穩定直流鏈電容電壓;操作於主動電力濾波模式時,可補償非線性負載造成的諧波問題,並校正功率因數及平衡三相功率。
在控制方面,分切合整數位控制直接由電流誤差計算對應的開關責任比率,並抵消直流鏈電壓、開關切換頻率及電感值變動的影響,最後以模擬與實測結果驗證此系統操作於不同模式下之性能及漣波補償之效果。
本研究主要貢獻為:第一,高低頻互補轉換器的切換頻率與功率配置能提升動態響應、降低元件成本;第二,考慮系統轉移函數與延遲時間對漣波補償之影響,推導新的漣波補償法,使漣波補償更精準;第三,將高低頻互補轉換器應用於不同模式,增加實用性。
This research designs and implements a 10 kVA multi-function hybrid-frequency converter system (HbFCS) and achieves the improvement of ripple-compensation. The system consists of two parallel three-phase four-wire half-bridge converters with different switching frequencies and power ratings, and with microcontroller Renesas RX62Ts as control kernels. A low frequency converter operates with high power rating, while a high frequency converter operates with low power rating. Both the power and switching frequency design arrangements ensure the system to have higher power output with lower cost devices, higher dynamic performance and smaller output filters. HbFCS can be operated in grid-connected mode, rectification mode and active power filter mode. In grid-connection mode, HbFCS is able to adjust the output of active power and reactive power and comply with power quality specifications. In rectification mode, HbFCS transfers the power from the utility grid into dc to supply dc loads and regulates the voltage of dc-link capacitors. In active power filter mode, HbFCS can eliminate harmonic currents, improve power factor and balance three-phase power.
Regarding the control method, the D-Σ digital control considers the variations of dc-bus voltage, ac-side voltage and inductance. Finally, the feasibility of HbFCS and the effectiveness of the improved ripple-compensation method are verified by both simulated and experimental results.
The major contributions of this research can be summarized as follows. First, both the power and switching frequency design arrangements of the HbFCS can improve dynamic response and reduce the cost. Secondly, consider the influence of system transfer function and delay time on ripple-compensation, and derive a new ripple-compensation method to make it more accurate. Thirdly, apply HbFCS to different operation modes to increase usability.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1 單模組轉換器架構 2
1-2-2 多模組轉換器架構 5
1-2-3 併網型轉換器濾波器架構 6
1-2-4 轉換器控制法 8
1-3 論文大綱 11
第二章 系統架構與控制法則 12
2-1 系統架構 12
2-2 分切合整數位控制 13
2-2-1 市電併聯模式 13
2-2-2 整流模式 21
2-2-3 主動電力濾波模式 26
第三章 高低頻LCL濾波器設計 31
3-1 設計原則 31
3-1-1 開關額定電流與漣波電流峰值條件 31
3-1-2 電感漣波電流斜率條件 32
3-1-3 切換頻率與漣波剩餘率條件 33
3-2 LCL濾波器設計流程 38
3-2-1 濾波器導向設計 39
3-2-2 功率模組導向設計 40
第四章 系統周邊電路 41
4-1 輔助電源 41
4-2 精密全波整流電路 42
4-3 偏壓放大電路 43
4-4 主動訊號箝位電路 43
4-5 電壓箝位電路 44
4-6 交流電壓回授電路 45
4-7 電感電流回授電路 46
4-8 直流鏈電壓回授電路 47
4-9 開關驅動電路 47
4-10 電網斷開電路 49
第五章 韌體規劃 50
5-1 RX62T群組微控制器簡介 50
5-2 低頻轉換器主程式流程規劃 53
5-3 A/D低頻中斷副程式流程規劃 54
5-4 高頻轉換器主程式流程規劃 55
5-5 A/D高頻中斷副程式流程規劃 56
第六章 實務考量與損耗分析 57
6-1 實務考量 57
6-1-1 電感值變化 57
6-1-2 電流回授訊號頻寬設計 58
6-1-3 程式複雜度優化 61
6-1-4 開關責任比率限制 62
6-2 損耗分析 62
6-2-1 電感損耗 62
6-2-2 開關導通損耗 65
6-2-3 開關切換損耗 66
6-2-4 總損耗與效率 67
第七章 模擬與實驗結果 68
7-1 系統規格與LCL濾波器參數 68
7-2 市電併聯模式模擬與實測波形 69
7-2-1 純實功輸出 70
7-2-2 虛功補償 76
7-2-3 變載 80
7-3 整流模式模擬波形 83
7-3-1 上下臂平衡負載 84
7-3-2 上下臂不平衡負載 85
7-4 主動電力濾波模式模擬與實測波形 86
7-4-1 不平衡線性負載 87
7-4-2 非線性負載 93
第八章 結論與未來研究方向 98
8-1 結論 98
8-2 未來研究方向 99
參考文獻 100

[1] G. Narayanan, D. Zhao, H. K. Krishnamurthy, R. Ayyanar, and V. T. Ranganathan, “Space Vector Based Hybrid PWM Techniques for Reduced Current Ripple”, IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1614-1627, Apr. 2008.
[2] F. Z. Peng, G.W. Ott and D.J. Adams, “Harmonic and Reactive Power Compensation Based on the Generalized Instantaneous Reactive Power Theory for Three-Phase Four-Wire Systems,” IEEE Transactions on Power Electronics, vol. 13, no. 6, pp. 1174-1181, Nov. 1998.
[3] J. Rodriguez, J.-S. Lai and F. Z. Peng, “Multilevel Inverters: A Survey of Topologies, Controls, and Applications,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, Aug. 2002.
[4] S. Kouro, M. Malinowski, et al., “Recent Advances and Industrial Applications of Multilevel Converters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553-2580, Aug. 2010.
[5] L. Asiminoaei, E. Aeloiza, P. N. Enjeti, and F. Blaabjerg, “Shunt Active-Power-Filter Topology Based on Parallel Interleaved Inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1175-1189, Mar. 2008.
[6] B. Cougo, T. Meynard and G. Gateau, “Parallel Three-Phase Inverters: Optimal PWM Method for Flux Reduction in Intercell Transformers,” IEEE Transactions on Power Electronics, vol. 26, no. 8, pp. 2184-2191, Aug. 2011.
[7] “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems”, IEEE Std. 519™-2014.
[8] Y. Chen and K. M. Smedley, “Parallel Operation of One-Cycle Controlled Three-Phase PFC Rectifiers,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3217-3224, Dec. 2007.
[9] M. Beltrao de Rossiter Correa, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lima, “A General PWM Strategy for Four-Switch Three-Phase Inverters,” IEEE Transactions on Power Electronics, vol. 21, no. 6, pp.1618-1627, Nov. 2006.
[10] M. Rivera, V. Yaramasu, A. Llor, J. Rodriguez, B. Wu, and M. Fadel, “Digital Predictive Current Control of a Three-Phase Four-Leg Inverter,” IEEE Transactions on Industrial Electronics, vol. 60, no. 11, pp. 4903-4912, Nov. 2013.
[11] A. Mohd, E. Ortjohann, N. Hamsic, W. Sinsukthavorn, M. Lingemann, A. Schmelter, and D. Morton, “Control Strategy and Space Vector Modulation for Three-Leg Four-Wire Voltage Source Inverters under Unbalanced Load Conditions,” IET Power Electronics, vol. 3, no. 3, pp. 323-333, May. 2010.
[12] P. Cortes, G. Ortiz, J. I. Yuz, J. Rodriguez, S. Vazquez, and L. G. Franquelo, “Model Predictive Control of an Inverter With Output LC Filter for UPS Applications,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1875-1883, Jun. 2009.
[13] J. He and Y. W. Li, “Generalized Closed-Loop Control Schemes with Embedded Virtual Impedances for Voltage Source Converters with LC or LCL Filters,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp.1850-1861, Apr. 2012.
[14] Y. Tang, P. C. Loh, P. Wang, F. H. Choo, and F. Gao, “Exploring Inherent Damping Characteristic of LCL-Filters for Three-Phase Grid-Connected Voltage Source Inverters,” IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1433-1443, Mar. 2012.
[15] W. Wu, Y. He and F. Blaabjerg, “An LLCL Power Filter for Single-Phase Grid-Tied Inverter,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 782-789, Feb. 2012.
[16] C. Rech, H. Pinheiro, H. A. Grundling, H. L. Hey, and J. R. Pinheiro, “Analysis and Design of a Repetitive Predictive-PID Controller for PWM Inverters,” IEEE 32nd Annual Power Electronics Specialists Conference, vol. 2, pp. 986-991, Jun. 2001.
[17] K. Zhang, Y. Kang, J. Xiong, and J. Chen, “Direct Repetitive Control of SPWM Inverter for UPS Purpose,” IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 784-792, May. 2003.
[18] P. Mattavelli, “An Improved Deadbeat Control for UPS Using Disturbance Observers,” IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 206-212, Feb. 2005.
[19] C. Cecati, F. Ciancetta and P. Siano, “A Multilevel Inverter for Photovoltaic Systems with Fuzzy Logic Control,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4115-4125, Dec. 2010.
[20] T. F. Wu, C. H. Chang, L. C. Lin, G. R. Yu, and Y. R. Chang, “A D-Σ Digital Control for Three-Phase Inverter to Achieve Active and Reactive Power Injection”, IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 3879-3890, Aug. 2014.
[21] T. F. Wu, L. C. Lin, N. Yao, Y. K. Chen, and Y. C. Chang, “Extended Application of D-Σ Digital Control to a Single-Phase Bidirectional Inverter with an LCL Filter”, IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 3903-3911, Jul. 2015.
[22] 林世洋,分切合整數位控制高低頻互補換流器研究,國立清華大學電機工程研究所碩士論文,2017年7月。
[23] 陳韋錡,分切合整數位控制高低頻互補換流器功率調配與漣波補償,國立清華大學電機工程研究所碩士論文,2018年7月。
[24] T. F. Wu, Y. H. Huang, W.C. Cheng, and X. C. Gao, “Ripple-Compensation Improvement of Direct Digital Controlled 3Φ4W Grid-connected Hybrid-Frequency Inverter System”, 2019 IEEE Applied Power Electronics Conference and Exposition, pp. 284-289, Mar. 2019.
[25] C. A. Rabbath and N. Lechevin, Discrete-Time Control System Design with Applications. New York, NY: Springer New York: Imprint: Springer, 2014.
[26] C. L. Philips, H. T. Nagle and A. Chakrabortty, Digital Control System Analysis and Design. Harlow, Essex, England: Pearson Education Limited, 2015
[27] D. M. Sullivan, “Frequency-Dependent FDTD Methods Using Z Transforms,” IEEE Transactions on Antennas and Propagation, vol. 40, no. 10, pp. 1223-1230, Oct. 1992.
[28] L. Asiminoaei, E. Aeloiza, P. N. Enjeti, and F. Blaabjerg, “Shunt Active-Power-Filter Topology Based on Parallel Interleaved Inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1175-1189, Mar. 2008.
[29] Y. Tang, P. C. Loh, P. Wang, F. H. Choo, F. Gao, and F. Blaabjerg, “Generalized Design of High Performance Shunt Active Power Filter With Output LCL Filter,” IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1443-1452, Mar. 2012.
[30] A. Reznik, M. G. Simões, A. Al-Durra, and S. M. Muyeen, “LCL Filter Design and Performance Analysis for Grid-Interconnected Systems,” IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1225-1232, Mar.-Apr. 2014.
[31] Texas Instruments, “UCx84x Current-Mode PWM Controllers,” UC3843 Datasheet, Jan. 2017.
[32] LEM, “Current Transducer LA 55-P,” LA 55-P Datasheet ,Sep. 2018.
[33] LEM, “Current Transducer LA 100-P,” LA 100-P Datasheet, Nov. 2018.
[34] STMicroelectronics, “Low power OFF-line SMPS primary switcher,” VIPer22AS Datasheet, Nov. 2010.
[35] Infineon Technologies, “1EDI EiceDRIVER™ Compact - Separate output variant for IGBT,” 1EDI40I12AF Datasheet, Nov. 2014.
[36] Renesas Electronics, “RX62T/62G Group Datasheet,” Jan. 2014.
[37] Texas Instruments, “TL08xx JFET-Input Operational Amplifiers,” TL084 Datasheet, May. 2015.
[38] Texas Instruments, “LM6172 Dual High Speed, Low Power, Low Distortion, Voltage Feedback Amplifiers,” LM6172 Datasheet, Mar. 2013.
[39] Chang Sung Corporation, “Magnetic Powder Cores,” Oct. 2015.
[40] CREE, “CAS300M12BM2 Datasheet,” 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *