帳號:guest(18.117.71.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱定廉
作者(外文):Chu, Ting-Lien
論文名稱(中文):適用於二階背接式轉換器共模電壓消除之脈寬調變策略
論文名稱(外文):A Modulation Strategy for Common-mode-Voltage Cancellation of the two-Level Back-to-Back Converter
指導教授(中文):鄭博泰
指導教授(外文):Cheng, Po-tai
口試委員(中文):謝振中
侯中權
口試委員(外文):Shieh, Jenn-Jong
Hou, Chung-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:106061501
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:85
中文關鍵詞:二階背接式轉換器共模電壓漏電流直流鏈電壓權重控制
外文關鍵詞:two-level back-to-back convertercommon-mode voltageleakage currentweighting DC link voltage control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在背接式轉換器中,共模電壓是重要的議題之一。背接式轉換器由兩台轉換器組成,包含整流器以及逆變器。從克希荷夫電壓定律推導,背接式轉換器中的共模電壓為兩台轉換器之間各自的共模電壓差值。因此,以前的研究有提出主動式零向量調變策略,藉由減少各自的共模電壓而抑制整體系統的共模電壓大小。
本論文除了實現傳統抑制共模電壓的方法外,針對二階背接式轉換器,提出一種新的脈衝寬度調變策略,能完全消除共模電壓以及漏電流。同時,探討零序注入技術以及線性調變比的關係。當兩台電壓命令有相位差的狀況下,而衍生的過調變比狀況。因此,本論文提出新的直流鏈電壓權重控制來解決此現象。最後將此技術驗證於實驗平台上。
Common-mode voltage (CMV) is one of the most important issues for the back-to-back (BTB) converter. The BTB converter is consisting of two converters, the rectifier and the inverter. According to the derivation of Kirchhoff voltage law, the system CMV mainly depends on the CMV difference between the rectifier and the inverter. Therefore, some previous research has proposed Active zero state pulse width modulation, which can reduce the total CMV by decreasing the CMV at each converter.
This thesis not only testify the AZSPWM, but also presents a new PWM strategy for the BTB converter, which can cancel magnitude of common-mode voltage (CMV) and leakage current. Besides, we also discuss the relationship between zero-sequence-injection (ZSI) techniques and linear modulation index. In addition, discussing the phase difference between the rectifier and the inverter voltage commands, which may lead to the over-modulation problem. Therefore, this thesis will also present a new weighting DC bus voltage control to reduce the risk of the over-modulation. Finally, proposed control method will be validated by experimental results.
摘要.............................................................I
Abstract........................................................II
致謝............................................................III
List of Contents................................................IV
List of Figures.................................................VI
List of Tables...................................................X
CHAPTER 1 Introduction...........................................1
1.1 Motivation................................................1
1.2 Outline of the Contents...................................2
CHAPTER 2 Literature Review......................................3
2.1 Introduction.................................................3
2.1.1 Sine PWM / Space Vector PWM................................4
2.1.2 Active Zero State PWM......................................7
2.2 Common-Mode Component Analysis...............................8
CHAPTER 3 Operation Principal...................................12
3.1 Introduction................................................12
3.2 Control Block Diagram.......................................12
3.2.1 DC Bus Voltage Control....................................13
3.2.2 The d-q Synchronous Frame Model...........................14
3.3 Common-Mode Component Analysis of the two-level Back-to-Back Converter.......................................................19
3.4 Cyclic PWM for the Cancellation of Common-Mode Component....24
3.4.1 Displacement-pattern Modulation...........................25
3.4.2 Cyclic PWM Sequencing.....................................25
3.4.2 Ideal (Neglect the Dead-time) Realization in Cyclic PWM...33
3.4.3 Dead-Time Realization in Cyclic PWM.......................35
3.4.4 Dead-Time Compensation Realization in Cyclic PWM..........39
3.5 Zero-Sequence Injection for the two-level Back-to-Back Converter.......................................................44
3.6 Asynchronism Issue in the two-level Back-to-Back Converter..47
3.6.1 Limitation of Linear Modulation...........................48
3.6.2 Discussion of Control Freedom.............................50
3.7 Weighting DC Bus Voltage Control............................52
CHAPTER 4 Laboratory Test Results...............................54
4.1 Introduction................................................54
4.2 Experimental Results........................................55
4.2.1 Output Voltage and Output Current of the Inverter Side....56
4.2.2 Common-Mode Voltage and Leakage Current without ZSI.......59
4.2.3 Flux Ripple Analysis......................................66
4.2.4 Relationship between ZSI and the Leakage Current..........75
4.2.4 Test Results of Weighting DC Bus Voltage Control..........78
CHAPTER 5 Conclusions...........................................81
Appendix: System Overview.......................................82
Reference.......................................................83

[1] V. R. Gasiyarov, A. S. Maklakov and R. A. Lisovski, "Grid power control by medium voltage AC drives based on back-to-back converters," 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, 2018, pp. 629-631.
[2] H. Jafari, M. Mahmoudi, A. Fatehi, M. H. Naderi and E. Kaya, "Improved power sharing with a back-to-back converter and state-feedback control in a utility-connected microgrid," 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, 2018, pp. 1-6.
[3] A. Muetze and A. Binder,"Practial rules for assessment of inverter-induced bearing currents in inverter-fed AC motors up to 500 kW," IEEE Trans. Ind. Electron., vol.54,no. 3,pp. 1614-1622,Jun. 2007.
[4] A. M. Hava and E. Un, “Performance analysis of reduced common-mode voltage PWM methods and comparison with standard PWM methods for three-phase voltage-source inverters,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 241–252, Jan. 2009.
[5] Y. S. Lai, “New random technique of inverter control for common-mode voltage reduction of inverter-fed induction motor drives,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1139–1146, Dec. 1999.
[6] M. Cacciato, A. Consoli, G. Scarcella, and A. Testa, “Reduction of common-mode currents in PWMinverter motor drives,” IEEE Trans. Ind. Appl., vol. 35, no. 2, pp. 469–476, Mar./Apr. 1999.

[7] X. Guo, D. Xu, and B. Wu, “Common-mode voltage mitigation for back-to- back current-source converter with optimal space-vector modulation,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 688–697, Jan. 2016.
[8] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous power theory and applications to power conditioning vol. 31: John Wiley & Sons, 2007.
[9] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based pwm-vsi drives,” IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 49–61, Jan. 1999.
[10] J. Espina et al., “Reduction of output common mode voltage using a novel SVM implementation in matrix converters for improved motor lifetime,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5903–5911, Nov. 2014.
[11] R. Baranwal, K. Basu, and N. Mohan, “Carrier-based implementation of SVPWM for dual two-level VSI and dual matrix converter with zero common-mode voltage,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1471–1487, Mar. 2015.
[12] P. R. Kumar et al., “A three-level common-mode voltage eliminated inverter with single DC supply using flying capacitor inverter and cascaded H-bridge,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1402–1409, Mar. 2014.
[13] N.-V. Nguyen, T.-K. T. Nguyen, and H.-H. Lee, “A reduced switching loss PWM strategy to eliminate common-mode voltage in multilevel inverters,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5425–5438, Oct. 2015.
[14] H. Zhang, A. Von Jouanne, S. Dai, A. Wallace, and F. Wang, “Multilevel inverter modulation schemes to eliminate common-mode voltages,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1645–1653, Nov./Dec. 2000.
[15] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Carrier-based pwm-vsi overmodulation strategies: analysis, comparison, and design,” IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 674–689, July 1998.
[16] X. Zhang, D. Boroyevich, R. Burgos, P. Mattavelli, and F. Wang, “Impact and compensation of dead time on common mode voltage elimination modulation for neutral-point-clamped three-phase inverters,” in Proc. IEEE ECCE Asia Downunder, Jun. 2013, pp. 1016–1022.
[17] C. C. Hou, C. C. Shih, P. T. Cheng, and A. M. Hava, “Common-mode voltage reduction pulsewidth modulation techniques for three-phase grid-connected converters,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1971–1979, April 2013.
[18] H.-C. Chen, M.-J. Tsai, Y.-B. Wang, and P.-T. Cheng, “A novel neutral point potential control for the three-level neutral-point-clamped converter,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 2016, pp. 1–7.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *