帳號:guest(3.15.144.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):童國豪
作者(外文):Tung, Kuo-Hao
論文名稱(中文):新式細菌檢測試劑開發
論文名稱(外文):New chemical reagents for bacteria detection
指導教授(中文):鄭兆珉
指導教授(外文):Cheng, Chao-Min
口試委員(中文):魯才德
李怡姿
口試委員(外文):Lu, Tsai-Te
Lee, Yi-Tzu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:106038509
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:49
中文關鍵詞:大腸桿菌金黃色葡萄球菌細菌檢測MTTPMS伊紅Y甲基藍敗血症
外文關鍵詞:Escherichia coliStaphylococcus aureusBacterial detectionMTTPMSEosinYMethylene blueSepsis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
細菌感染不論在醫院、自然環境中一直都是威脅人類身體健康的議題,然而在臨床上細菌感染的即時診斷是困難的,即使科學家不斷各種抗生素來治療細菌感染,但敗血症仍然是全球主要死因之一。現有細菌檢測主要可分成兩大類:(1)傳統培養基檢測法:細菌經過特殊培養基培養1~2天後觀察菌落顏色變化。(2)免疫分析法:利用抗體或抗原進行相關檢測,可獲得高專一性之檢測結果。目前細菌檢測上尚未具有低成本、簡單操作、不需額外設備協助之快速檢測方法,以即時提供樣品中細菌濃度之資訊。在本研究我們選擇大腸桿菌及金黃色葡萄球菌作為偵測細菌,大腸桿菌為自然環境中常見的指標性細菌,而金黃色葡萄球菌經常是造成細菌感染的原因。本研究利用MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 及PMS (Phenazine methosulfate)與細菌內酵素產生氧化還原反應,並添加氫氧化鈉增強反應呈色效果。實驗結果顯示,細菌與反應試劑在595 nm波長下隨著細菌濃度越高有較高的吸收度。我們也利用伊紅Y-甲基藍複合染劑(Eosin Y-Methylene blue)及Triton X-100來分辨不同濃度的細菌,在菌液中依序加入添加Triton X-100之伊紅Y溶液、亞甲基藍染劑,根據細菌成分化學性質不同,細菌細胞質透過離子鍵與酸性染料伊紅Y結合呈粉紅色,細菌核酸透過離子鍵與鹼性染料亞甲基藍結合成藍紫色。隨著樣本中細菌量越多被染成藍紫色的核酸越多,因此,菌量越多顏色越深,反之菌量越少則顏色越淡。
Bacterial infections have been a threat to human health in hospitals and the natural environment. However, immediate diagnosis of bacterial infections is difficult. Even if various antibiotics have been administrated to treat bacterial infections, sepsis is still one of the major causes of death worldwide. Nowadays, the bacteria detection methods can be mainly divided into two categories: (1) traditional medium detection method: bacteria are cultured in a special medium for 1 to 2 days to observe the colony color change. (2) Immunoassay: The detection of antibodies or antigens can be used to obtain highly specific test results. At present, there is no rapid detection method for low-cost, simple operation and no additional equipment requirement for bacterial detection. In an addition, current methods are unable to provide instant information about the concentration of bacteria in the sample. In our study, we chose Escherichia coli and Staphylococcus aureus as the materials. We used MTT - PMS reagent to produce redox with enzymes in bacterium, and add Sodium hydroxide to enhance the color of the reaction. The absorbance value in 595 nm increases with the increasing concentration of bacteria. We use Eosin Y - Methylene blue reagent to identify different concentrations of bacteria.
Abstract Ⅰ
摘要 Ⅱ
誌謝辭 Ⅲ
目錄 Ⅳ
圖目錄 Ⅷ
第一章、緒論 1
1.1研究動機與目的 1
1.1.1細菌檢測於臨床上重要性 1
1.2細菌檢測技術 4
1.3細菌檢測技術分類 5
1.3傳統培養法 5
1.3.2分生分析法(PCR放大法) 7
1.3.3酵素免疫分析法 9
1.3.4以 MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)及吩嗪硫酸甲酯 (Phenazine methosulfate, PMS)檢測細菌 11
1.3.5 以2-(2-甲氧基-4-硝苯基)-3-(4-硝苯基)-5-(2,4-二磺基苯)-2H四唑單鈉 (2-(2-Methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt, WST-8)及1-甲氧基-5-甲基酚嗪硫酸甲酯鹽 (1-Methoxy-5-methylphenazinium methyl sulfate, 1-Methoxy PMS) 檢測細菌 13
1.3.6以伊紅y(Eosin Y) 及亞甲基藍 (Methylene blue) 檢測細菌 14
1.4細胞破碎技術 15
1.5革蘭氏陽性菌(Gram positive) 16
1.6革蘭氏陰性菌(Gram negative) 17
1.7大腸桿菌 (Escherichia coli) 18
1.8金黃色葡萄球菌(Staphylococcus aureus) 19
1.9伊紅Y ( Eosin Y) 20
1.10亞甲基藍(Methylene blue) 21
1.11曲拉通X-100(Triton X-100) 21
第二章、材料與方法 22
2.1 實驗藥品與材料 22
2.1.1 實驗藥品 22
2.1.2實驗材料 23
2.2實驗儀器 23
2.2.1 TECAN Sunrise酵素免疫分析儀測讀儀(ELISA Reader) 23
2.2.2 Thermo超微量核酸定量光譜儀(Nanodrop) 24
2.2.3 顏色感測器(Color sensor) 25
2.3菌液制備 25
2.3.1固態培養基制備 25
2.3.2細菌培養 26
2.4 藥品制備 27
2.4.1 MTT - PMS試劑制備 27
2.4.2 WST-8 - 1-Methoxy PMS 試劑制備 27
2.4.3 細菌複合染劑制備 27
2.5 實驗方法 27
2.5.1以酵素免疫分析儀測讀儀檢測MTT-PMS試劑在各種系統中與不同濃度菌液595 nm吸光值變化 27
2.5.2以超微量核酸定量光譜儀檢測MTT-PMS試劑與不同濃度菌液450nm吸光值變化 29
2.5.3以顏色感測器檢測 MTT - PMS試劑與不同濃度菌液顏色變化 30
2.5.4以酵素免疫分析儀測讀儀檢測WST-8 -1-Methoxy PMS試劑與不同濃度菌液450nm吸光值變化 30
2.5.5以伊紅Y (Eosin Y)及亞甲基藍(Methylene blue)檢測不同濃度菌液 31
第三章、實驗結果與討論 33
3.1以酵素免疫分析儀測量MTT-PMS試劑與不同濃度細菌於不同系統595nm吸光值 33
3.1.1緩衝溶液系統 33
3.1.2尿液系統 35
3.1.3血清系統 36
3.1.4以超微量核酸定量光譜儀測量MTT - PMS試劑與不同濃度細菌於595 nm吸光值 37
3.1.5以顏色感測器連續測量MTT-PMS試劑與不同濃度菌液顏色變化 39
3.2以細菌核酸染色劑法鑑別不同濃度菌液並以酵素免疫分析儀測讀儀測量595nm吸光值 39
3.3以細菌核酸染色劑法鑑別不同濃度菌液並以酵素免疫分析儀測讀儀測量595nm吸光值 40
第四章、結論及未來展望 42
4.1結論 42
4.2未來展望 43
參考文獻 44
1. G. S. Martin, D. M. Mannino, S. Eaton, M. Moss, The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348, 1546-1554 (2003).
2. D. C. Angus et al., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29, 1303-1310 (2001).
3. W. H. Organization, "Removing obstacles to healthy development: report on infectious diseases,"(Geneva: World Health Organization, 1999).
4. R. A. Balk, R. C. Bone, The septic syndrome. Definition and clinical implications. Crit Care Clin5, 1-8 (1989).
5. S. M. Ayres, SCCM's new horizons conference on sepsis and septic shock. Crit Care Med 13, 864-866 (1985).
6. L. Hall-Stoodley, J. W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95-108 (2004).
7. J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappin-Scott, Microbial biofilms. Annu Rev Microbiol 49, 711-745 (1995).
8. tamm, Walter EHooton, Thomas M. Management of urinary tract infections in adults. New England journal of medicine 18. 329, 1328-1334(1993)
9. Amdekar, SarikaSingh, Vinod Singh, Desh Deepak. Probiotic therapy: immunomodulating approach toward urinary tract infection. Current microbiology 5, 63, 484 (2011)
10. O. Lazcka, F. J. Del Campo, F. X. Munoz, Pathogen detection: a perspective of traditional methods and biosensors. Biosensors and bioelectronics 22, 1205-1217 (2007).
11. S. Ishii, M. J. Sadowsky, Escherichia coli in the environment: implications for water quality and human health. Microbes and Environments 23, 101-108 (2008).
12. A. Giwa, A. Ogunribido, The applications of membrane operations in the textile industry: a review. British Journal of Applied Science & Technology 2, 296 (2012).
13. A. Rompré, P. Servais, J. Baudart, M.-R. De-Roubin, P. Laurent, Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. Journal of microbiological methods 49, 31-54 (2002).
14. K. Chotinantakul, W. Suginta, A. Schulte, Advanced Amperometric Respiration Assay for Antimicrobial Susceptibility Testing. Analytical chemistry 86, 10315-10322 (2014).
15. C. Ramakers, J. M. Ruijter, R. H. L. Deprez, A. F. Moorman, Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience letters 339, 62-66 (2003).
16. C.-M. Shih et al., based ELISA to rapidly detect Escherichia coli. Talanta 145, 2-5 (2015).
17. R. C. Bartlett, M. Mazens, B. Greenfield, Acceleration of tetrazolium reduction by bacteria. Journal of clinical microbiology 3, 327-329 (1976).
18. R. Cedillo-Rivera, A. Ramirez, O. Munoz, A rapid colorimetric assay with the tetrazolium salt MTT and phenazine methosulfate (PMS) for viability of Entamoeba histolytica. Archives of medical research 23, 59-61 (1992).
19. T. Tsukatani et al., Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. Journal of Microbiological Methods 75, 109-116 (2008).
20. C. McNulty et al., New spiral bacterium in gastric mucosa. Journal of Clinical Pathology 42, 585-591 (1989).
21. G. Kronvall, E. Myhre, Differential staining of bacteria in clinical specimens using acridine orange buffered at low pH. Acta Pathologica Microbiologica Scandinavica Section B Microbiology 85, 249-254 (1977).
22. I. Di Lernia, C. Schiraldi, M. Generoso, M. De Rosa, Trehalose production at high temperature exploiting an immobilized cell bioreactor. Extremophiles 6, 341-347 (2002).
23. T. Tsuchido, I. Aoki, M. Takano, Interaction of the fluorescent dye lN-phenylnaphthylamine with Escherichia coli cells during heat stress and recovery from heat stress. Microbiology 135, 1941-1947 (1989).
24. T. Homma, T. Nakae, Effects of cations on the outer membrane permeability of Escherichia coli. The Tokai journal of experimental and clinical medicine 7, 171-175 (1982).
25. M. Vaara, Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid A mutants. Journal of bacteriology 148, 426-434 (1981).
26. B. Li et al., Glycine and Triton X-100 enhanced secretion of recombinant α-CGTase mediated by OmpA signal peptide in Escherichia coli. Biotechnology and bioprocess engineering 17, 1128-1134 (2012).
27. H.-L. Alakomi et al., Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 66, 2001-2005 (2000).
28. L. Leive, The barrier function of the Gram‐negative envelope. Annals of the New York Academy of Sciences 235, 109-129 (1974).
29. G. J. Hucker, H. J. Conn, Methods of Gram staining. (1923).
30. S. Josset, N. Keller, M.-C. Lett, M. J. Ledoux, V. Keller, Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms. Chemical Society Reviews 37, 744-755 (2008).
31. A. S. Shashkov et al., A novel type of teichoic acid from the cell wall of Bacillus subtilis VKM B-762. Carbohydrate research 346, 1173-1177 (2011).
32. S. Sedov, N. Belogurova, S. Shipovskov, A. Levashov, P. Levashov, Lysis of Escherichia coli cells by lysozyme: discrimination between adsorption and enzyme action. Colloids and Surfaces B: Biointerfaces 88, 131-133 (2011).
33. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science 275, 177-182 (2004).
34. W. P. Hamilton, M. Kim, E. L. Thackston, Comparison of commercially available Escherichia coli enumeration tests: Implications for attaining water quality standards. Water Research 39, 4869-4878 (2005).
35. N. Mitik-Dineva et al., Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Current microbiology 58, 268-273 (2009).
36. J. S. Kavanaugh, A. R. Horswill, Impact of environmental cues on staphylococcal quorum sensing and biofilm development. Journal of Biological Chemistry 291, 12556-12564 (2016).
37. R. V. Rasmussen, V. G. Fowler Jr, R. Skov, N. E. Bruun, Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future microbiology 6, 43-56 (2011).
38. L. Simon, F. Gauvin, D. K. Amre, P. Saint-Louis, J. Lacroix, Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clinical infectious diseases 39, 206-217 (2004).
39. R. C. Bone et al., Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101, 1644-1655 (1992).
40. J. W. Costerton, P. S. Stewart, E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322 (1999).
41. J. Lin, A. Ganesh, Water quality indicators: bacteria, coliphages, enteric viruses. International journal of environmental health research 23, 484-506 (2013).
42. E. Fricker, K. Illingworth, C. Fricker, Use of two formulations of Colilert and QuantiTray™ for assessment of the bacteriological quality of water. Water research 31, 2495-2499 (1997).
43. D. Ratkowsky, J. Olley, T. McMeekin, A. Ball, Relationship between temperature and growth rate of bacterial cultures. Journal of bacteriology 149, 1-5 (1982).
44. E. Powell, Growth rate and generation time of bacteria, with special reference to continuous culture. Microbiology 15, 492-511 (1956).
45. J. Monod, The growth of bacterial cultures. Annual review of microbiology 3, 371-394 (1949).
46. A. M. Wang, M. V. Doyle, D. F. Mark, Quantitation of mRNA by the polymerase chain reaction. Proceedings of the National Academy of Sciences 86, 9717-9721 (1989).
47. J. Van Meerloo, G. J. Kaspers, J. Cloos, in Cancer cell culture. (Springer, 2011), pp. 237-245.
48. D. Gerlier, N. Thomasset, Use of MTT colorimetric assay to measure cell activation. Journal of immunological methods 94, 57-63 (1986).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *