帳號:guest(3.145.174.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江正欽
作者(外文):Chiang, Cheng-Chin
論文名稱(中文):開發可增強血腦屏障通透性之基因傳遞系統於神經膠質瘤治療之應用
論文名稱(外文):A Non-viral miRNA/siRNA Delivery System Traverses the Blood Brain Barrier for the Treatment of Glioblastoma
指導教授(中文):陳韻晶
指導教授(外文):Chen, Yun-Ching
口試委員(中文):魯才德
林愷悌
口試委員(外文):Lu, Tsai-Te
Lin, Kai-Ti
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:106038508
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:59
中文關鍵詞:多形性膠質母細胞瘤趨化因子受體血腦屏障脂質磷酸鈣奈米載體基因治療
外文關鍵詞:Glioblastoma mutiformeCXCR4blood-brain-barrierlipid/calcium/phosphate nanoparticlesgene therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:267
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
多形性膠質母細胞瘤 (Glioblastoma Multiforme, GBM) 到目前為止仍是無法根治的疾病。由於 GBM 本身的抗藥性及血腦屏障 (Blood-Brain-Barrier, BBB),導致藉由血液運輸的抗癌藥物無法有效通過腦屏障並造成細胞受損凋亡。因此 , 如何有效通過血腦屏障 (Blood-Brain-Barrier, BBB) 是進行後續研究必須克服的難題之一。在本研究中,我們使用脂質磷酸鈣 (Lipid/Calcium/Phosphate, LCP) 奈米載體 (NPs) 提供庇護以延長體內循環時間,並藉由增加血腦屏障通透性的方式,使奈米載體成功浸潤至腦內。由於 GBM 細胞在其表面過度現趨化因子 受體 (Chemokine receptor 4, CXCR4),因而可以藉此特性來標靶 GBM。我們在 我們在奈米載體表面修飾 CTCE-9908 (Stromal cell-derived factor 1 analog),藉由被 CXCR4 辨認以進行腦癌的標靶治療。藉由奈米載體遞送小分子干擾核糖酸 (siRNA) 或小分子核糖酸 (microRNA) 進行腦癌治療。期望藉由具標靶性的載體與遞送基因的方式有效抑制腦瘤生長 。
Nowadays, glioblastoma multiforme (GBM) is still an incurable disease. Due to the development of drug resistant and the present of blood-brain-barrier (BBB), anti-cancer drugs cannot efficiently penetrate BBB and achieve significant cytotoxicity in GBM cells. Thus, there is an urgent clinical need to develop an effective therapeutic strategy to penetrate BBB, target GBM and overcome drug resistance to suppress GBM progression. Thus, in this study, we assembled lipid/calcium/phosphate nanoparticles that could prolong the half-life time during the blood circulation and penetrate BBB to accumulate into the brain. We further modified the surface of NPs with CTCE-9908 peptides, CXCL12 N-terminus derived peptides to target CXCR4-overexpressing GBM cells. The GBM-targeted NPs efficiently delivered the RNA cargoes (siRNA/miRNA) into GBM. We expect that the therapeutic siRNA/miRNA delivered by GBM-targeted NPs may efficiently suppress tumor growth in murine GBM models.
摘要..............................................................2
Abstract.........................................................3
Abbreviation.....................................................4
Table of Contents................................................7
Table of Figures.................................................9
Motivation and aims.............................................10
Introduction....................................................12
2.1 Glioblastoma multiforme.....................................12
2.2 Blood-Brain-Barrier.........................................13
2.3 Potential of nitric oxide on BBB permeability...............14
2.4 Nitric oxide donor..........................................15
2.5 Chemokine receptor 4........................................16
2.6 RNA interference............................................18
2.7 Drug delivery for gene silencing............................21
Materials and Methods...........................................24
3.1 Materials and equipment.....................................24
3.1.1 Materials.................................................24
3.1.2 Equipment.................................................25
3.2 Cell culture................................................26
3.3 Orthotopic tumor model establishment........................27
3.4 Preparation of LCP NPs......................................27
3.5 Characterization of NPs.....................................28
3.6 Cumulative release of NO....................................28
3.7 Cellular uptake.............................................29
3.8 Permeability assay..........................................29
3.9 Quantitative real time polymerase chain reaction............30
3.10 Western Blot Analysis......................................31
3.11 Tissue distribution study..................................32
3.12 Immunofluorescence.........................................33
3.13 Statistics.................................................33
Results.........................................................34
4.1 The gene expression of GBM..................................34
4.2 Cellular uptake of FAM-siRNA transported by CTCE-9908 modified LCP-NO NPs......................................................35
4.4 Enhance the permeability of BBB via NO......................41
4.5 Angiogenesis downregulation of VEGF siRNA-loaded CTCE-LCP NPs in vitro........................................................43
4.6 Biodistribution.............................................45
4.7 Anti-angiogenesis effect and Tumor suppression of VEGF siRNA-loaded CTCE-LCP NPs in vivo.....................................47
Conclusion......................................................50
Discussion and future work......................................52
Reference.......................................................56
1. Allen, Theresa M %J Nature Reviews Cancer. 2002. 'Ligand-targeted therapeutics in anticancer therapy', 2: 750.
2. Chen, Cuitian, Ziqing Duan, Yan Yuan, Ruixiang Li, Liang Pang, Jianming Liang, Xinchun Xu, Jianxin %J ACS applied materials Wang, and interfaces. 2017. 'Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB', 9: 5864-73.
3. Duong, Hien TT, Zhixia Dong, Lin Su, Cyrille Boyer, Jacob George, Thomas P Davis, and Jianhua %J Small Wang. 2015. 'The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension', 11: 2291-304.
4. Fan, Kelong, Xiaohua Jia, Meng Zhou, Kun Wang, João Conde, Jiuyang He, Jie Tian, and Xiyun %J ACS nano Yan. 2018. 'Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma', 12: 4105-15.
5. Fire, Andrew, SiQun Xu, Mary K Montgomery, Steven A Kostas, Samuel E Driver, and Craig C %J nature Mello. 1998. 'Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans', 391: 806.
6. Gao, Yan, Xin-Ling Liu, and Xiao-Rong %J International journal of nanomedicine Li. 2011. 'Research progress on siRNA delivery with nonviral carriers', 6: 1017.
7. Glaser, Talita, Inbo Han, Liquan Wu, and Xiang %J Frontiers in pharmacology Zeng. 2017. 'Targeted nanotechnology in glioblastoma multiforme', 8: 166.
8. Goodwin, Tyler J, Yingqiu Zhou, Sara N Musetti, Rihe Liu, and Leaf %J Science translational medicine Huang. 2016. 'Local and transient gene expression primes
the liver to resist cancer metastasis', 8: 364ra153-364ra153.
9. Gu, Frank X, Rohit Karnik, Andrew Z Wang, Frank Alexis, Etgar Levy-Nissenbaum, Seungpyo Hong, Robert S Langer, and Omid C %J Nano today Farokhzad. 2007. 'Targeted nanoparticles for cancer therapy', 2: 14-21.
10. Guo, Peixuan, Oana Coban, Nicholas M Snead, Joe Trebley, Steve Hoeprich, Songchuan Guo, and Yi %J Advanced drug delivery reviews Shu. 2010. 'Engineering RNA for targeted siRNA delivery and medical application', 62: 650-66.
11. Hannon, Gregory J %J nature. 2002. 'RNA interference', 418: 244.
12. Heggannavar, Geetha B, Chinmay G Hiremath, Divya D Achari, Vishwas G Pangarkar, and Mahadevappa Y %J ACS omega Kariduraganavar. 2018. 'Development of Doxorubicin-Loaded Magnetic Silica–Pluronic F-127 Nanocarriers Conjugated with Transferrin for Treating Glioblastoma across the Blood–Brain Barrier Using an in Vitro Model', 3: 8017-26.
13. Karim, Reatul, Claudio Palazzo, Brigitte Evrard, and Geraldine %J Journal of Controlled Release Piel. 2016. 'Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art', 227: 23-37.
14. Kwiecien, S, K Jasnos, M Magierowski, Z Sliwowski, R Pajdo, B Brzozowski, T Mach, D Wojcik, and T %J J Physiol Pharmacol Brzozowski. 2014. 'Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress-induced gastric injury', 65: 613-22.
15. Lam, Jenny KW, Michael YT Chow, Yu Zhang, and Susan WS %J Molecular Therapy-Nucleic Acids Leung. 2015. 'siRNA versus miRNA as therapeutics for gene silencing', 4.
16. Li, Jun, Yang Yang, and Leaf %J Journal of controlled release Huang. 2012.
'Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor', 158: 108-14.
17. Liao, Yu-Xin, Cheng-Hao Zhou, Hui Zeng, Dong-Qing Zuo, Zhuo‑Ying Wang, Fei Yin, Ying-Qing Hua, and Zheng-Dong %J International journal of molecular medicine Cai. 2013. 'The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas', 32: 1239-46.
18. Mehrabadi, Abbas Rezaeian, Minna A Korolainen, Gary Odero, Donald W Miller, and Tiina M %J Neurochemistry international Kauppinen. 2017. 'Poly (ADP-ribose) polymerase-1 regulates microglia mediated decrease of endothelial tight junction integrity', 108: 266-71.
19. Muntané, Jordi, and Manuel %J World journal of hepatology De la Mata. 2010. 'Nitric oxide and cancer', 2: 337.
20. Olivera, Gabriela C, Xiaoyuan Ren, Suman K Vodnala, Jun Lu, Lucia Coppo, Chaniya Leepiyasakulchai, Arne Holmgren, Krister Kristensson, and Martin E %J PLoS pathogens Rottenberg. 2016. 'Nitric oxide protects against infection-induced neuroinflammation by preserving the stability of the blood-brain barrier', 12: e1005442.
21. Otsuka, Shannon, and Gwyn %J Journal of Thoracic Oncology Bebb. 2008. 'The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer', 3: 1379-83.
22. Su, Chia-Hao, Ching-Yi Tsai, Boguslaw Tomanek, Wei-Yu Chen, and Fong-Yu %J Nanoscale Cheng. 2016. 'Evaluation of blood–brain barrier-stealth nanocomposites for in situ glioblastoma theranostics applications', 8: 7866-70.
23. Teicher, Beverly A, and Simon P %J Clinical cancer research Fricker. 2010. 'CXCL12 (SDF-1)/CXCR4 pathway in cancer': 1078-0432. CCR-09-2329.
24. Thiel, Victoria E, Kenneth L %J Antioxidants Audus, and Redox Signaling. 2001.
62
'Nitric oxide and blood–brain barrier integrity', 3: 273-78.
25. Ung, Nolan, and Isaac %J Journal of neuro-oncology Yang. 2015. 'Nanotechnology to augment immunotherapy for the treatment of glioblastoma multiforme', 123: 473-81.
26. Vanin, Anatoly F %J Nitric oxide. 2009. 'Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology', 21: 1-13.
27. Wang, Peng George, Ming Xian, Xiaoping Tang, Xuejun Wu, Zhong Wen, Tingwei Cai, and Adam J %J Chemical reviews Janczuk. 2002. 'Nitric oxide donors: chemical activities and biological applications', 102: 1091-134.
28. Zhang, Chunling, Ning Tang, XingJun Liu, Wei Liang, Wei Xu, and Vladimir P %J Journal of controlled release Torchilin. 2006. 'siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene', 112: 229-39.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *