|
1. Semenza, G.L., Life with oxygen. Science, 2007. 318(5847): p. 62-64. 2. Lunt, S.Y. and M.G. Vander Heiden, Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation, in Annual Review of Cell and Developmental Biology, Vol 27, R. Schekman, L. Goldstein, and R. Lehmann, Editors. 2011. p. 441-464. 3. Park, S. and K.M. Park, Hyperbaric oxygen-generating hydrogels. Biomaterials, 2018. 182: p. 234-244. 4. Lemasters, J.J., et al., The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochimica Et Biophysica Acta-Bioenergetics, 1998. 1366(1-2): p. 177-196. 5. Kaelin, W.G. and P.J. Ratcliffe, Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Molecular Cell, 2008. 30(4): p. 393-402. 6. Farris, A.L., A.N. Rindone, and W.L. Grayson, Oxygen delivering biomaterials for tissue engineering. Journal of Materials Chemistry B, 2016. 4(20): p. 3422-3432. 7. Weaver, L.K., K.J. Valentine, and R.O. Hopkins, Carbon monoxide poisoning - Risk factors for cognitive sequelae and the role of hyperbaric oxygen. American Journal of Respiratory and Critical Care Medicine, 2007. 176(5): p. 491-497. 8. Krafft, M.P., Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Advanced Drug Delivery Reviews, 2001. 47(2-3): p. 209-228. 9. Camci-Unal, G., et al., Oxygen-releasing biomaterials for tissue engineering. Polymer International, 2013. 62(6): p. 843-848. 10. Oh, S.H., et al., Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials, 2009. 30(5): p. 757-762. 11. Pedraza, E., et al., Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(11): p. 4245-4250. 12. Wang, J.P., et al., Oxygen-Generating Nanofiber Cell Scaffolds with Antimicrobial Properties. Acs Applied Materials & Interfaces, 2011. 3(1): p. 67-73. 13. Jain, R.A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000. 21(23): p. 2475-2490. 14. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3(3): p. 1377-1397. 15. Kashi, T.S.J., et al., Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. International Journal of Nanomedicine, 2012. 7: p. 221-234. 16. Anderson, J.M. and M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 1997. 28(1): p. 5-24. 17. Siegel, S.J., et al., Effect of drug type on the degradation rate of PLGA matrices. European Journal of Pharmaceutics and Biopharmaceutics, 2006. 64(3): p. 287-293. 18. Wischke, C. and S.P. Schwendeman, Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics, 2008. 364(2): p. 298-327. 19. Zhang, H.F., et al., Preservation of Blood Vessels with an Oxygen Generating Composite. Advanced Healthcare Materials, 2018. 7(21). 20. Lu, C.Y., et al., The role of oxygen during fracture healing. Bone, 2013. 52(1): p. 220-229. 21. Burge, R., et al., Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. Journal of Bone and Mineral Research, 2007. 22(3): p. 465-475. 22. Hu, K. and B.R. Olsen, Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. Journal of Clinical Investigation, 2016. 126(2): p. 509-526. 23. Gomez-Barrena, E., et al., Bone fracture healing: Cell therapy in delayed unions and nonunions. Bone, 2015. 70: p. 93-101. 24. Loi, F., et al., Inflammation, fracture and bone repair. Bone, 2016. 86: p. 119-130. 25. Claes, L., S. Recknagel, and A. Ignatius, Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology, 2012. 8: p. 133. 26. Marsell, R. and T.A. Einhorn, The biology of fracture healing. Injury-International Journal of the Care of the Injured, 2011. 42(6): p. 551-555. 27. Kanczler, J.M. and R.O.C. Oreffo, Osteogenesis and angiogenesis: The potential for engineering bone. European Cells & Materials, 2008. 15: p. 100-114. 28. Ray, P.D., B.W. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 2012. 24(5): p. 981-990. 29. Circu, M.L. and T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine, 2010. 48(6): p. 749-762. 30. Wei, H., et al., Apoptosis of Mesenchymal Stem Cells Induced by Hydrogen Peroxide Concerns Both Endoplasmic Reticulum Stress and Mitochondrial Death Pathway Through Regulation of Calspases, p38 and JNK. Journal of Cellular Biochemistry, 2010. 111(4): p. 967-978. 31. Min, S.K., et al., Endoplasmic reticulum stress is involved in hydrogen peroxide induced apoptosis in immortalized and malignant human oral keratinocytes. Journal of Oral Pathology & Medicine, 2008. 37(8): p. 490-498. 32. Prasad, P., et al., Multifunctional Albumin-MnO2 Nanoparticles Modulate Solid Tumor Microenvironment by Attenuating Hypoxia, Acidosis, Vascular Endothelial Growth Factor and Enhance Radiation Response. Acs Nano, 2014. 8(4): p. 3202-3212.
|