|
1. Weaver, J.D., et al., Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Science Advances, 2017. 3(6). 2. Jun, Y., et al., Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials, 2014. 35(17): p. 4815-4826. 3. Van Belle, T.L., K.T. Coppieters, and M.G. Von Herrath, Type 1 Diabetes: Etiology, Immunology, and Therapeutic Strategies. Physiological Reviews, 2011. 91(1): p. 79-118. 4. Kopan, C., et al., Approaches in immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Frontiers in Immunology, 2018. 9. 5. Aghazadeh, Y. and M.C. Nostro, Cell Therapy for Type 1 Diabetes: Current and Future Strategies. Current Diabetes Reports, 2017. 17(6). 6. Shapiro, A.M.J., M. Pokrywczynska, and C. Ricordi, Clinical pancreatic islet transplantation. Nature Reviews Endocrinology, 2017. 13(5): p. 268-277. 7. Johansson, H., et al., Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes, 2005. 54(6): p. 1755-1762. 8. Komatsu, H., et al., Posttransplant oxygen inhalation improves the outcome of subcutaneous islet transplantation: A promising clinical alternative to the conventional intrahepatic site. American Journal of Transplantation, 2018. 18(4): p. 832-842. 9. Kanak, M.A., et al., Inflammatory Response in Islet Transplantation. International Journal of Endocrinology, 2014. 10. Saudek, F., et al., Magnetic Resonance Imaging of Pancreatic Islets Transplanted Into the Liver in Humans. Transplantation, 2010. 90(12): p. 1602-1606. 11. Shin, J.Y., et al., Transplantation of Heterospheroids of Islet Cells and Mesenchymal Stem Cells for Effective Angiogenesis and Antiapoptosis. Tissue Engineering Part A, 2015. 21(5-6): p. 1024-1035. 12. Cantarelli, E. and L. Piemonti, Alternative Transplantation Sites for Pancreatic Islet Grafts. Current Diabetes Reports, 2011. 11(5): p. 364-374. 13. Pepper, A.R., et al., Revascularization of Transplanted Pancreatic Islets and Role of the Transplantation Site. Clinical & Developmental Immunology, 2013. 14. Veriter, S., P. Gianello, and D. Dufrane, Bioengineered Sites for Islet Cell Transplantation. Current Diabetes Reports, 2013. 13(5): p. 745-755. 15. Mundra, V., I.C. Gerling, and R.I. Mahato, Mesenchymal Stem Cell-Based Therapy. Molecular Pharmaceutics, 2013. 10(1): p. 77-89. 16. Madec, A.M., et al., Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 2009. 52(7): p. 1391-1399. 17. Abdi, R., et al., Immunomodulation by mesenchymal stem cells - A potential therapeutic strategy for type 1 diabetes. Diabetes, 2008. 57(7): p. 1759-1767. 18. Duprez, I.R., et al., Preparatory studies of composite mesenchymal stem cell islets for application in intraportal islet transplantation. Upsala Journal of Medical Sciences, 2011. 116(1): p. 8-17. 19. Rackham, C.L., et al., Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia, 2011. 54(5): p. 1127-1135. 20. Meirelles, L.D., et al., Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 2009. 20(5-6): p. 419-427. 21. Jain, R.K., Molecular regulation of vessel maturation. Nature Medicine, 2003. 9(6): p. 685-693. 22. Yancopoulos, G.D., et al., Vascular-specific growth factors and blood vessel formation. Nature, 2000. 407(6801): p. 242-248. 23. Kunder, C.A., A.L. St John, and S.N. Abraham, Mast cell modulation of the vascular and lymphatic endothelium. Blood, 2011. 118(20): p. 5383-5393. 24. Staton, C.A., et al., Current methods for assaying angiogenesis in vitro and in vivo. International Journal of Experimental Pathology, 2004. 85(5): p. 233-248. 25. Levenberg, S., et al., Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 2005. 23(7): p. 879-884. 26. Melero-Martin, J.M., et al., Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research, 2008. 103(2): p. 194-202. 27. Traktuev, D.O., et al., Robust Functional Vascular Network Formation In Vivo by Cooperation of Adipose Progenitor and Endothelial Cells. Circulation Research, 2009. 104(12): p. 1410-U320. 28. Koike, N., et al., Creation of long-lasting blood vessels. Nature, 2004. 428(6979): p. 138-139. 29. Liang, H.F., et al., Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules, 2004. 5(5): p. 1917-1925. 30. Chen, C.H., et al., Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules, 2006. 7(3): p. 736-743. 31. Bromberg, L.E. and E.S. Ron, Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews, 1998. 31(3): p. 197-221. 32. Jeong, B., S.W. Kim, and Y.H. Bae, Thermosensitive sol-gel reversible hydrogels. Advanced Drug Delivery Reviews, 2012. 64: p. 154-162. 33. Yang, M.J., et al., Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel. Biomacromolecules, 2007. 8(9): p. 2746-2752. 34. Lee, W.Y., et al., The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials, 2009. 30(29): p. 5505-5513. 35. Wang, C.C., et al., Spherically Symmetric Mesenchymal Stromal Cell Bodies Inherent with Endogenous Extracellular Matrices for Cellular Cardiomyoplasty. Stem Cells, 2009. 27(3): p. 724-732. 36. Chen, C.H., et al., Construction and characterization of fragmented mesenchymal-stem-cell sheets for intramuscular injection. Biomaterials, 2007. 28(31): p. 4643-4651. |