帳號:guest(18.188.29.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹順雯
作者(外文):Chan, Shuen-Wen
論文名稱(中文):主動性傷口敷料的開發及其應用於細菌感染的預防
論文名稱(外文):Development of active wound dressings and their application for the prevention of bacterial infections
指導教授(中文):林宗宏
指導教授(外文):Lin, Zong-Hong
口試委員(中文):李博仁
蔡宗廷
口試委員(外文):Li, Bor-Ran
Tsai, Tsung-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:106038501
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:53
中文關鍵詞:摩擦奈米發電機碲化鉍雙氧水殺菌傷口敷料
外文關鍵詞:triboelectric nanogeneratorbismuth telluridehydrogen peroxidedisinfectionwound dressing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著老年化的趨勢以及越來越進步的技術與觀念等的影響下,傳統敷料所能提供的效用已經達不到需求,隨之而來的各種先進敷料在近年來開始蓬勃發展,創新傷口敷料將朝著使照護省時、省力、經濟、有效為原則來發展。因此本研究開發了一種新型傷口敷料,希望藉由平時人體運動即能產生電輸出,進一步進行電化學反應產生活性氧物質,再經由活性氧物質和細菌表面作用使之失去活性死亡而達到殺菌的作用。除了藉由平時人體的運動外,我們在敷料中加入了一熱電觸媒「碲化鉍」,即使是待在室內無法運動的狀態下,也能藉由外界的溫度差產生活性氧物質達到殺菌的效果。本研究結果顯示,此種動靜皆可使用的敷料具有極大的潛力在未來可以成為另一種新型敷料的選擇。
With the increasing aging population and the high probability of bacterial infection, the demand for more advanced wound dressing technologies is rapidly increasing. Recently, the wound dressing market have approached towards developing innovative dressings which are more efficient, cost-effective and easy to use. Therefore, in this work, we have designed a novel kind of dressing which can be triggered by the various external stimuli like the human motion and temperature gradients. The triboelectric nanogenerator (TENGs) was employed to harvest the energy from the mechanical movement which was used to trigger the electrochemical reaction in the dressing to generate ROS that can cause oxidative damage to kill the bacteria present in the wound. In addition, the thermal catalyst bismuth telluride (Bi2Te3) was integrated with the dressing which can be stimulated by a temperature gradient to generate ROS. The as-developed the wound dressing provides a great potential to be a kind of advanced dressings in the future which can get triggered by both static and dynamic effect to generate ROS to prevent bacterial infections at the wound site.
摘要 I
Abstract II
List of Figures V
Chapter 1 Introduction 1
Chapter 2 Literature Review and Theory 3
2.1 Triboelectric Nanogenerator 3
2.1.1 Triboelectric Effect 3
2.1.2 Mechanism of Triboelectric Nanogenerator 5
2.1.3 Development of Triboelectric Nanogenerator 8
2.2 Source of Catalysis 9
2.2.1 Photocatalyst 9
2.2.2 Piezocatalyst 11
2.2.2 Thermalcatalyst 12
2.3 Reactive Oxygen Species (ROS) 13
Chapter 3 Experimental Section 15
3.1 Material and Reagent 15
3.2 Instrument 17
3.3 Fabrication of Wearable Triboelectric Nanogenerator 18
3.4 Fabrication of Wound Dressing 18
3.4.1 Preparation of Chitosan hydrogel 18
3.4.2 The Synthesis of Bi2Te3 19
3.4.3 Preparation of Wound Dressing 20
3.5 Characterization 20
3.6 Bacteria Culture 21
3.6.1 Growth of bacterial strains 21
3.6.2 Preparation of Agar Plate 22
3.6.3 Disinfection Performance 23
3.7 Detection of H2O2 24
3.8 In Vitro Cell Toxicity 25
3.8.1 Cell Culture 25
3.8.2 Cytotoxicity 25
Chapter 4 Result and Discussion 27
4.1 Characterization of Wound Dressing 27
4.1.1 Structure of Wound Dressing 27
4.1.2 Application in Disinfection by Bi2Te3 30
4.2 Characterization of TENG 33
4.2.1 Mechanism 38
4.3 Cell toxicity 43
4.4 Application in Real Model 46
Chapter 5 Conclusion 48
Reference 49
Publication 53
Conference 53
1. GlobeNewswire. Advanced Wound Care Market To Reach USD 14.89 Billion By 2026 | Reports And Data. 2019; Available from: https://www.globenewswire.com/news-release/2019/04/25/1809968/0/en/Advanced-Wound-Care-Market-To-Reach-USD-14-89-Billion-By-2026-Reports-And-Data.html.
2. Karaolia, P., et al., Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Applied Catalysis B: Environmental, 2018. 224: p. 810-824.
3. Liu, C., et al., Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light. Nature nanotechnology, 2016. 11(12): p. 1098.
4. Chou, T.-M., et al., A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection. Nano Energy, 2019. 57: p. 14-21.
5. Wang, M., et al., Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities. Angewandte Chemie International Edition, 2018.
6. Mao, C., et al., Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS nano, 2018. 12(2): p. 1747-1759.
7. Zhu, G., et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano letters, 2012. 12(9): p. 4960-4965.
8. Azad, P. Triboelectric nanogenerator based on vertical contact separation mode for energy harvesting. in 2017 International Conference on Computing, Communication and Automation (ICCCA). 2017. IEEE.
9. Niu, S., et al., Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy, 2015. 12: p. 760-774.
10. Wang, S., et al., Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano letters, 2013. 13(5): p. 2226-2233.
11. Yang, Y., et al., A single‐electrode based triboelectric nanogenerator as self‐powered tracking system. Advanced Materials, 2013. 25(45): p. 6594-6601.
12. Zhu, G., et al., Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 2015. 14: p. 126-138.
13. Kim, C.S., et al., Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Letters, 2018. 3(3): p. 501-507.
14. Kim, K.N., et al., Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS nano, 2015. 9(6): p. 6394-6400.
15. Pu, X., et al., A self‐charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium‐ion battery for wearable electronics. Advanced Materials, 2015. 27(15): p. 2472-2478.
16. Seung, W., et al., Nanopatterned textile-based wearable triboelectric nanogenerator. ACS nano, 2015. 9(4): p. 3501-3509.
17. Li, Z., et al., Muscle‐driven in vivo nanogenerator. Advanced Materials, 2010. 22(23): p. 2534-2537.
18. Ouyang, H., et al., Symbiotic cardiac pacemaker. Nature communications, 2019. 10(1): p. 1821.
19. Zhang, X.-S., et al., Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano letters, 2013. 13(3): p. 1168-1172.
20. Zheng, Q., et al., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science advances, 2016. 2(3): p. e1501478.
21. Pu, X., et al., Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Science advances, 2017. 3(7): p. e1700694.
22. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37.
23. Hong, Y., et al., In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Applied Catalysis B: Environmental, 2016. 180: p. 663-673.
24. Liu, L., et al., A stable Ag3PO4@ g-C3N4 hybrid core@ shell composite with enhanced visible light photocatalytic degradation. Applied Catalysis B: Environmental, 2016. 183: p. 133-141.
25. Yamaguchi, Y., et al., Selective inactivation of bacteriophage in the presence of bacteria by use of ground Rh-doped SrTiO3 photocatalyst and visible light. ACS applied materials & interfaces, 2017. 9(37): p. 31393-31400.
26. Zeng, X., et al., Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017. 218: p. 163-173.
27. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 2001. 293(5528): p. 269-271.
28. Nosaka, Y. and A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chemical reviews, 2017. 117(17): p. 11302-11336.
29. Teng, Z., et al., Edge-Functionalized g-C3N4 Nanosheets as a Highly Efficient Metal-free Photocatalyst for Safe Drinking Water. Chem, 2019.
30. Liang, Z., et al., Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Applied Catalysis B: Environmental, 2019. 241: p. 256-269.
31. Dahiya, R.S. and M. Valle, Robotic tactile sensing: technologies and system. 2012: Springer Science & Business Media.
32. Feng, Y., et al., Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy, 2017. 40: p. 481-486.
33. Wu, J., N. Qin, and D. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy, 2018. 45: p. 44-51.
34. Wu, J.M., et al., Piezo‐Catalytic Effect on the Enhancement of the Ultra‐High Degradation Activity in the Dark by Single‐and Few‐Layers MoS2 Nanoflowers. Advanced Materials, 2016. 28(19): p. 3718-3725.
35. Wu, M.-H., et al., Ultrahigh efficient degradation activity of single-and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect. Nano energy, 2017. 40: p. 369-375.
36. Yuan, B., et al., Enhanced Piezocatalytic Performance of (Ba, Sr) TiO3 Nanowires to Degrade Organic Pollutants. ACS Applied Nano Materials, 2018. 1(9): p. 5119-5127.
37. Dusastre, V., Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. 2011: World Scientific.
38. Bayr, H., Reactive oxygen species. Critical care medicine, 2005. 33(12): p. S498-S501.
39. Dalton, J.S., et al., Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environmental Pollution, 2002. 120(2): p. 415-422.
40. Mamba, G. and A. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Applied Catalysis B: Environmental, 2016. 198: p. 347-377.
41. Sun, C., et al., Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag 2 O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure. RSC Advances, 2016. 6(90): p. 87446-87453.
42. Wang, Y., et al., Ag 2 S and MoS 2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS. Journal of materials science, 2016. 51(2): p. 779-787.
43. Cho, M., et al., Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water research, 2004. 38(4): p. 1069-1077.
44. Marugán, J., et al., Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Applied Catalysis B: Environmental, 2008. 82(1-2): p. 27-36.
45. Jao, Y.-T., et al., A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano energy, 2018. 50: p. 513-520.
46. Chiu, C.-M., et al., Self-powered active antibacterial clothing through hybrid effects of nanowire-enhanced electric field electroporation and controllable hydrogen peroxide generation. Nano Energy, 2018. 53: p. 1-10.
47. Aviello, G. and U.G. Knaus, NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal immunology, 2018. 11(4): p. 1011.
48. Cheng, K.-Y., et al., Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet. Scientific reports, 2018. 8(1): p. 12214.
49. Foreman, J., et al., Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003. 422(6930): p. 442.
50. Han, L., et al., Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS nano, 2017. 11(3): p. 2561-2574.
51. Zheng, Y., et al., Gelatin-based hydrogels blended with gellan as an injectable wound dressing. ACS omega, 2018. 3(5): p. 4766-4775.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *