帳號:guest(3.145.175.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅偉祐
作者(外文):Luo, Wei-Yu
論文名稱(中文):應用醫療照護失效模式與效應分析降低外送檢體錯誤率-苗栗縣竹南鎮衛生所為例
論文名稱(外文):Apply Healthcare Failure Mode and Effect Analysis to Reduce the Error Rate of Delivery Samples –A Case Study of Health Center at Zhunan Township in Miaoli County
指導教授(中文):邱銘傳
指導教授(外文):Chiu, Ming-Chuan
口試委員(中文):李昀儒
李雨青
口試委員(外文):Lee, Yun-Ju
Lee, Yu-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系碩士在職專班
學號:106036609
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:57
中文關鍵詞:病人安全衛生所檢驗流程醫療照護失效模式與效應分析特性要因分析圖5W2H
外文關鍵詞:Patient SafetyInspection processHFMEACause and Effect Diagram5W2H
相關次數:
  • 推薦推薦:0
  • 點閱點閱:630
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
醫學檢驗數據為提供醫師診斷及治療的重要依據,準確的檢驗報告能提升醫療品質並維護病人安全。醫療照護失效模式與效應分析,簡稱HFMEA,是近年來醫院管理廣泛運用在評估病人安全的作業流程,並改善醫療品質的一種風險評估工具。
本研究執行期間為2016年4月至10月,採用美國評鑑聯合會(JCAHO)所建議的HFMEA 品質改善手法,導入衛生所檢驗流程作業評估,探討外送檢體錯誤率之高風險操作步驟與原因。研究結果顯示,依據HFMEA五個步驟,組成跨專業的品質改善小組,經團隊分析衛生所檢驗前3項主流程,進一步細分為12個次流程,仔細探究後發現有17項潛在失效模式與24項可能造成失效的潛在原因,透過特性要因圖及5W2H分析,主因可分為三大項人工作業失誤:人工判讀處方箋檢驗項目、人工手寫採血管標籤、人工傳送檢驗處方箋。提出具體改善對策有4項,分別為資訊系統化、採血順序標準化、人員教育訓練、改進採檢標示圖。
研究結果顯示,運用HFMEA改善檢驗流程後,外送檢體退件率由2015年2.14%降至2018年0.49%,有效降低及排除檢體錯誤率發生,進而提升病人安全與醫療品質。
Inspectional data provides an important basis for doctor’s diagnosis and treatment. Precise inspection report can improve the medical quality as well as patients’ safety. Healthcare Failure Mode and Effect Analysis (HFMEA) is a process which generally utilized by the hospitals to evaluate the safety of patients recently and a risk assessment tool to improve the quality of care.
This research was conducted from April 2016 to October, adopting the HFMEA process from Joint Commission Accreditation of Healthcare Organizations (JCAHO), to enhance the inspectional quality of a district health center. The research results showed that the five steps of HFMEA operated by a cross functional team successfully improved the quality. After 3 main procedures of inspectional process were analyzed, it researched 17 potential failure mode and 24 reasons that can probably cause failures. By employing the Cause and Effect diagram and 5W2H technique, the team found 3 main causes of manual work errors, which are manually identify the prescription of the inspectional project, manually write the vacutainer labels and manually deliver inspectional prescription. Solutions to the above three issues: Systemize the information,, standardize the procedure of the blood collection, Train and educate the workers, and Changing the collection signs were also provided. After improvement, return rate of new declined from 2.14%(2015) to 0.49%(2018), which effectively reduced the inspection error rate and enhanced the patients’ safety as well as quality of care.
中文摘要 II
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3研究目的 4
1.4論文架構 4
1.5預期研究貢獻與限制 6
第二章文獻探討 7
2.1病人安全 7
2.2檢驗醫療錯誤 8
2.3 FMEA發展歷史與定義 9
2.4 FMEA應用 10
2.4.1設計失效模式與效應分析(Design Failure Modes and Effects Analysis, DFMEA) 10
2.4.2製程失效模式與效應分析(Process Failure modes and Effects Analysis, PFMEA) 10
2.4.3醫療失效模式與效應分析(Healthcare Failure Mode and Effect Analysis, HFMEA) 11
第三章研究方法 15
定義HFMEA主題 15
組成團隊 15
繪製流程圖 15
執行危害分析 16
確認行動與結果量測 18
第四章個案研究 21
4.1 個案機關介紹 21
4.1.1 服務地區人口結構 21
4.1.2 人員編制 22
4.1.3服務內容 23
4.2竹南衛生所檢驗業務 23
4.3委外檢驗檢體退件率 26
4.4檢驗流程HFMEA分析 27
4.5改善方案 43
4.5.1策略一 資訊系統化 43
4.5.2策略二 採血順序標準化 45
4.5.3策略三 人員訓練 47
4.5.4策略四 改進採檢標示圖 47
4.6改善結果 49
第五章結論與未來建議 52
5.1結論 52
5.2未來建議 53
參考文獻 54
英文文獻
1.Al Saleem N, Al-Surimi K Reducing the occurrence of errors in a laboratory's specimen receiving and processing department BMJ Open Quality 2016;5:u211474.w4624. doi: 10.1136/bmjquality.u211474.w4624
2.Bietenbeck, A., Junker, R., & Luppa, P. B. (2015). Central laboratory service and Point-of-Care Testing in Germany—from conflicting notions to complementary understandings. Point of Care, 14(1), 1-11.
3.DeRosier, J., Stalhandske, E., Bagian, J. P., & Nudell, T. (2002). Using Health Care Failure Mode and Effect Analysis™: The VA National Center for Patient Safety’s Prospective Risk Analysis System. The Joint Commission Journal on Quality Improvement, 28(5), 248-267.
doi:https://doi.org/10.1016/S1070-3241(02)28025-6
4.Goodrum, L., & Varkey, P. (2017). Prevention is better: the case of the underutilized failure mode effect analysis in patient safety. Israel journal of health policy research, 6, 10. doi:10.1186/s13584-016-0131-2
5.Hawker, C. D., McCarthy, W., Cleveland, D., & Messinger, B. L. (2014). Invention and validation of an automated camera system that uses optical character recognition to identify patient name mislabeled samples. Clinical chemistry, 60(3), 463-470.
6.Jain, K. (2017). Use of failure mode effect analysis (FMEA) to improve medication management process. International Journal of Health Care Quality Assurance, 30(2), 175-186. doi:10.1108/IJHCQA-09-2015-0113
7. Jiang, Y., Jiang, H., Ding, S., & Liu, Q. (2015). Application of failure mode and effects analysis in a clinical chemistry laboratory. Clinica Chimica Acta, 448. doi:10.1016/j.cca.2015.06.016
8.Junker, R., Petersmann, A., & Luppa, P. B. (2018). The relevance of POCT in healthcare. In Point-of-Care Testing (pp. 9-17). Springer, Berlin, Heidelberg.
9.Juran, J., & Godfrey, A. B. J. R. M.-H. (1999). Quality handbook. 173-178.
10.Li, Z., & Mobin, M. (2018, 22-25 Jan. 2018). A DFMEA-based Reliability Prediction Approach in Early Product Design. Paper presented at the 2018 Annual Reliability and Maintainability Symposium (RAMS).
11.Marasch, M., Houtz, A., & Hildebrand, J. (2018, 22-25 Jan. 2018). Application of DFMEA to Improve Producibility of Legacy Products. Paper presented at the 2018 Annual Reliability and Maintainability Symposium (RAMS).
12.Najafpour, Z., Hasoumi, M., Behzadi, F., Mohamadi, E., Jafary, M., & Saeedi, M. (2017). Preventing blood transfusion failures: FMEA, an effective assessment method. BMC Health Serv Res, 17(1), 453. doi:10.1186/s12913-017-2380-3
13.Neily, J.B., et al (2003). Using aggregate root cause analysis to improve patient safety. Joint Commission Journal on Quality and Safety, 29(8), 434-439.
14.Pergher, I., Brandolf, V. P., Pacheco, D. A. D. J., & Vaccaro, G. L. R. (2016). A patient-centric approach to improve health care services. Cogent Business & Management, 3:1. doi:10.1080/23311975.2016.1227232
15.Plebani, M. (2016). Towards a new paradigm in laboratory medicine: the five rights.Clinical Chemistry and Laboratory Medicine (CCLM),54(12), 1881-1891.
16.Procedures for Performing a Failure Mode, Effects and Criticality Analysis. U.S. Department of Defense. 1949. MIL–P–1629.
17.Rezaee, M.J, Yousefi, S., Valipour, M., & Dehdar, M. M. (2018). Risk analysis of sequential processes in food industry integrating multi-stage fuzzy cognitive map and process failure mode and effects analysis. Computers & Industrial Engineering, 123, 325-337. doi:10.1016/j.cie.2018.07.012
18.Yousefinezhadi, T., Jannesar Nobari, F. A., Behzadi Goodari, F., & Arab, M. (2016). A Case Study on Improving Intensive Care Unit (ICU) Services Reliability: By Using Process Failure Mode and Effects Analysis (PFMEA). Global journal of health science, 8:9, 52635. doi:10.5539/gjhs.v8n9p207
中文文獻
1.王本娟. (2019). 條碼科技導入於病人用藥安全品質管理之分析探討. (碩士), 國立臺北護理健康大學, 台北市. Retrieved from https://hdl.handle.net/11296/63a7nn
2.王玫瑛, 蘇經凱, & 陳正昇. (2015). 運用HFMEA改善檢驗危急值通報回覆率. Healthcare Quality, 6(1), 16-27.
3.任育琪, 俞佳彣, 陳貴香, & 葉淑玲. (2018). 降低內科病房血液檢體異常率. [Reducing The Incidence of Abnormal Blood Specimens In The Medical Ward]. 17(6), 82-93.
4.吳明原, 徐瑜敏, 利琇美, & 中華職業醫學雜誌, 張. J. (2018). 臨床罕見不良品質的採血針頭影響抽血安全的案例報告. 25(2), 135-140.
5.吳信宏, & 品質月刊, 黃. J. (2018). 重要的醫院品質管理系統參考指標-病人安全文化. [A Critical Reference Guideline for the Quality Management System in Hospitals - Patient Safety Culture]. 54(3), 28-31.
6.李香粉, 周秉昀, 蔡雅旻, & 台灣醫檢會報, 溫. J. (2017). 某區域醫院病人檢體採檢異常對分析前之影響. 32(2), 72-77.
7.社團法人台灣醫事檢驗學會(2018)。書名:由靜脈採集血液檢體之檢驗作業指引TSLM-GP-G02(2)。發行日期 2018 年 4 月 25日
8.林佳琦, 李怡旻, & 吳家麗. (2018). 以電腦輔助系統提升加護病房護理人員血液採檢流程正確率. [Using Computer-aid System to Enhance ICU Nursing Staff the Correct Rate of Phlebotomy Workflow]. 20(1), 77-87. doi:10.6540/ntjn.2018.1.007
9.林曉華, 鄭鴻榕, & 林汶珊. (2013). 運用失效模式與影響分析來改善門診病人採檢的流程. [Improving the Process of Outpatient Blood Sampling by Using Failure Mode and Effects Analysis]. 14(3), 228-243. doi:10.6174/jhm2013.14(3).228
10.林俊逸, 王惠玄, 王琦, & 李沛湘. (2014). 應用根本原因分析與條碼技術來改善手術室醫療檢體送檢流程. [Application of Root Cause Analysis and Bar Code Technique in Improving Transmission Processes for Operation Room Specimens]. 23(1), 29-47.
11.羅皓平, 品質月刊, (2018). IATF 16949 風險管理工具簡介-失效模式與效應分析. 54(3), 15-19.
12.財團法人醫院評鑑暨醫療品質策進會:台灣病人安全通報系統2017年年報(2018)。新北,醫策會,57-61。取自:http://www.patientsafety.mohw.gov.tw/Content/Downloads/List01.aspx?SiteID=1&MmmID=621273303702500244
13.醫策會. (2018). 財團法人醫院評鑑暨醫療品質策進會.
https://www.jct.org.tw/lp-21-1.html
14.張世宗. (2015). 應用製程失效模式與效應分析於安全氣囊充氣殼體製程. 虎尾科技大學, Available from Airiti AiritiLibrary database. (2015)
15.陳文亮, 江雅媚, & 張旭銘. (2013). 應用失效模式與效應分析於幼兒學步車產品設計. [Application Failure Modes and Effects Analysis on the Baby Walker Product Design]. 6(4), 97-101. doi:10.6208/jpme-2013-12-13
16.陳佳伶, 陳銘樹, 汪姍瑩, 陳雅凰, & 吳彥雯賴建甫. (2016). 應用「醫療照護失效模式與效應分析」以防範腫瘤標誌檢驗錯誤報告. [Healthcare failure mode and effects analysis (HFMEA) as a performance improvement tool to prevent tumor marker report errors in a radioimmunoassay laboratory]. 14(1), 1-17.
17.陳立洳, 蘇麗婷, & 林梅芳. (2018). 運用根本原因分析降低高濃度KCI給藥疏失-某地區教學醫院經驗分享. [Using Root Cause Analysis to Decrease High- Alert Medication Error of Potassium Chloride- Regional Hospital Experience Sharing]. 26(3), 211-217. doi:10.6168/fjcp.201807_26(3).0006
18.國民健康署成人預防保健「健康加值」方案服務檢查單,https://www.hpa.gov.tw/Pages/List.aspx?nodeid=189,閱覽日期27/12/2018
19.黃文錦. (2018). 智慧科技落實手術病理檢體送檢之精實醫療研究. (碩士), 嘉南藥理大學, 台南市. Retrieved from https://hdl.handle.net/11296/kt4794
20.劉詩維, 羅彬峯, & 曾櫻綺. (2016). 應用失效模式與效應分析評估放射檢查單錯誤之風險–以某一家醫院為例. [Applying FEMA to Assess the Risk of Radiological Examination Application of Error-Case Study of a Hospital]. 4(1), 45-50. doi:10.6717/jtmrt.201603_4(1).0007
21.藍惠如, 李愛誠, 吳玉萍, & 陳美如. (2018). 護理人員高警訊藥物給藥過程缺失率改善專案. [A Project to Improve Nurses' Error rate when Dispensing High-Alert Medications]. 14(1), 71-80.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *