|
References: 1. Fattore, L.; Ruggiero, C.F.; Liguoro, D.; Mancini, R.; Ciliberto, G. Single cell analysis to dissect molecular heterogeneity and disease evolution in metastatic melanoma. Cell Death Dis 2019, 10, 827, doi:10.1038/s41419-019-2048-5. 2. Schreier, S.; Triampo, W. The Blood Circulating Rare Cell Population. What Is It and What Is It Good for? Cells 2020, 9, doi:ARTN 79010.3390/cells9040790. 3. Proserpio, V.; Lonnberg, T. Single-cell technologies are revolutionizing the approach to rare cells. Immunol Cell Biol 2016, 94, 225-229, doi:10.1038/icb.2015.106. 4. Cho, J.H.; Kim, S.Y.; Lee, J.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Kang, W.K.; Kim, S.T. Detection of circulating tumor cells (CTCs) in cerebrospinal fluid of a patient with HER2-overexpressing gastric cancer and single cell analysis of intra-patient heterogeneity of CTCs. Transl Cancer Res 2019, 8, 2107-2112, doi:10.21037/tcr.2019.09.27. 5. Powell, A.A.; Talasaz, A.H.; Zhang, H.; Coram, M.A.; Reddy, A.; Deng, G.; Telli, M.L.; Advani, R.H.; Carlson, R.W.; Mollick, J.A.; et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 2012, 7, e33788, doi:10.1371/journal.pone.0033788. 6. Bernard, V.; Semaan, A.; Huang, J.; San Lucas, F.A.; Mulu, F.C.; Stephens, B.M.; Guerrero, P.A.; Huang, Y.; Zhao, J.; Kamyabi, N.; et al. Single-Cell Transcriptomics of Pancreatic Cancer Precursors Demonstrates Epithelial and Microenvironmental Heterogeneity as an Early Event in Neoplastic Progression. Clin Cancer Res 2019, 25, 2194-2205, doi:10.1158/1078-0432.CCR-18-1955. 7. Wisdom, A.J.; Mowery, Y.M.; Hong, C.S.; Himes, J.E.; Nabet, B.Y.; Qin, X.; Zhang, D.; Chen, L.; Fradin, H.; Patel, R.; et al. Single cell analysis reveals distinct immune landscapes in transplant and primary sarcomas that determine response or resistance to immunotherapy. Nat Commun 2020, 11, 6410, doi:10.1038/s41467-020-19917-0. 8. Gross, A.; Schoendube, J.; Zimmermann, S.; Steeb, M.; Zengerle, R.; Koltay, P. Technologies for Single-Cell Isolation. Int J Mol Sci 2015, 16, 16897-16919, doi:10.3390/ijms160816897. 9. Shieh, A.C. Biomechanical forces shape the tumor microenvironment. Ann Biomed Eng 2011, 39, 1379-1389, doi:10.1007/s10439-011-0252-2. 10. Chaudhuri, P.K.; Low, B.C.; Lim, C.T. Mechanobiology of Tumor Growth. Chem Rev 2018, 118, 6499-6515, doi:10.1021/acs.chemrev.8b00042. 11. Kalli, M.; Papageorgis, P.; Gkretsi, V.; Stylianopoulos, T. Solid Stress Facilitates Fibroblasts Activation to Promote Pancreatic Cancer Cell Migration. Annals of Biomedical Engineering 2018, 46, 657-669, doi:10.1007/s10439-018-1997-7. 12. Sachdeva, U.M.; Shimonosono, M.; Flashner, S.; Cruz-Acuna, R.; Gabre, J.T.; Nakagawa, H. Understanding the cellular origin and progression of esophageal cancer using esophageal organoids. Cancer Lett 2021, 509, 39-52, doi:10.1016/j.canlet.2021.03.031. 13. Tse, J.M.; Cheng, G.; Tyrrell, J.A.; Wilcox-Adelman, S.A.; Boucher, Y.; Jain, R.K.; Munn, L.L. Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci U S A 2012, 109, 911-916, doi:10.1073/pnas.1118910109. 14. Kim, B.G.; Gao, M.Q.; Kang, S.; Choi, Y.P.; Lee, J.H.; Kim, J.E.; Han, H.H.; Mun, S.G.; Cho, N.H. Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis 2017, 8, e2646, doi:10.1038/cddis.2017.73. 15. Kalli, M.; Voutouri, C.; Minia, A.; Pliaka, V.; Fotis, C.; Alexopoulos, L.G.; Stylianopoulos, T. Mechanical Compression Regulates Brain Cancer Cell Migration Through MEK1/Erk1 Pathway Activation and GDF15 Expression. Front Oncol 2019, 9, doi:ARTN 99210.3389/fonc.2019.00992. 16. Morikura, T.; Miyata, S. Effect of Mechanical Compression on Invasion Process of Malignant Melanoma Using In Vitro Three-Dimensional Cell Culture Device. Micromachines-Basel 2019, 10, doi:ARTN 66610.3390/mi10100666. 17. Morikura, T.; Miyata, S. Mechanical Intermittent Compression Affects the Progression Rate of Malignant Melanoma Cells in a Cycle Period-Dependent Manner. Diagnostics 2021, 11, doi:ARTN 111210.3390/diagnostics11061112. 18. Novak, C.M.; Horst, E.N.; Lin, E.; Mehta, G. Compressive Stimulation Enhances Ovarian Cancer Proliferation, Invasion, Chemoresistance, and Mechanotransduction via CDC42 in a 3D Bioreactor. Cancers (Basel) 2020, 12, doi:10.3390/cancers12061521. 19. Busser, H.; De Bruyn, C.; Urbain, F.; Najar, M.; Pieters, K.; Raicevic, G.; Meuleman, N.; Bron, D.; Lagneaux, L. Isolation of Adipose-Derived Stromal Cells Without Enzymatic Treatment: Expansion, Phenotypical, and Functional Characterization. Stem Cells Dev 2014, 23, 2390-2400, doi:10.1089/scd.2014.0071. 20. Lee, J.T.Y.; Cheung, K.M.C.; Leung, V.Y.L. Systematic study of cell isolation from bovine nucleus pulposus: Improving cell yield and experiment reliability. J Orthop Res 2015, 33, 1743-1755, doi:10.1002/jor.22942. 21. Claridge, B.; Rai, A.; Fang, H.Y.; Matsumoto, A.; Luo, J.T.; McMullen, J.R.; Greening, D.W. Proteome characterisation of extracellular vesicles isolated from heart. Proteomics 2021, 21, doi:ARTN e210002610.1002/pmic.202100026. 22. Hooshmand, S.; Ghaderi, A.; Yusoff, K.; Karrupiah, T.; Rosli, R.; Mojtahedi, Z. Downregulation of RhoGDIalpha increased migration and invasion of ER (+) MCF7 and ER (-) MDA-MB-231 breast cancer cells. Cell Adh Migr 2013, 7, 297-303, doi:10.4161/cam.24204. 23. Aumsuwan, P.; Khan, S.I.; Khan, I.A.; Ali, Z.; Avula, B.; Walker, L.A.; Shariat-Madar, Z.; Helferich, W.G.; Katzenellenbogen, B.S.; Dasmahapatra, A.K. The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro. Arch Biochem Biophys 2016, 591, 98-110, doi:10.1016/j.abb.2015.12.001. 24. Kwiatkowska, E.; Wojtala, M.; Gajewska, A.; Soszynski, M.; Bartosz, G.; Sadowska-Bartosz, I. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. J Bioenerg Biomembr 2016, 48, 23-32, doi:10.1007/s10863-015-9637-5. 25. Samandari, M.; Rafiee, L.; Alipanah, F.; Sanati-Nezhad, A.; Javanmard, S.H. A simple, low cost and reusable microfluidic gradient strategy and its application in modeling cancer invasion. Sci Rep 2021, 11, 10310, doi:10.1038/s41598-021-89635-0. 26. Ryu, H.H.; Jung, S.; Jung, T.Y.; Moon, K.S.; Kim, I.Y.; Jeong, Y.I.; Jin, S.G.; Pei, J.; Wen, M.; Jang, W.Y. Role of metallothionein 1E in the migration and invasion of human glioma cell lines. Int J Oncol 2012, 41, 1305-1313, doi:10.3892/ijo.2012.1570. 27. Torka, R.; Thuma, F.; Herzog, V.; Kirfel, G. ROCK signaling mediates the adoption of different modes of migration and invasion in human mammary epithelial tumor cells. Exp Cell Res 2006, 312, 3857-3871, doi:10.1016/j.yexcr.2006.08.025. 28. Lammermann, T.; Sixt, M. Mechanical modes of 'amoeboid' cell migration. Curr Opin Cell Biol 2009, 21, 636-644, doi:10.1016/j.ceb.2009.05.003. 29. Seetharaman, S.; Etienne-Manneville, S. Cytoskeletal Crosstalk in Cell Migration. Trends Cell Biol 2020, 30, 720-735, doi:10.1016/j.tcb.2020.06.004. 30. Shellard, A.; Mayor, R. All Roads Lead to Directional Cell Migration. Trends Cell Biol 2020, 30, 852-868, doi:10.1016/j.tcb.2020.08.002. 31. Paluch, E.K.; Aspalter, I.M.; Sixt, M. Focal Adhesion-Independent Cell Migration. Annu Rev Cell Dev Biol 2016, 32, 469-490, doi:10.1146/annurev-cellbio-111315-125341. 32. Mgrditchian, T.; Sakalauskaite, G.; Muller, T.; Hoffmann, C.; Thomas, C. The multiple roles of actin-binding proteins at invadopodia. Int Rev Cel Mol Bio 2021, 360, 99-132, doi:10.1016/bs.ircmb.2021.03.004. 33. Thompson, S.B.; Waldman, M.M.; Jacobelli, J. Polymerization power: effectors of actin polymerization as regulators of T lymphocyte migration through complex environments. Febs J 2021, doi:10.1111/febs.16130. 34. Mehidi, A.; Rossier, O.; Schaks, M.; Chazeau, A.; Biname, F.; Remorino, A.; Coppey, M.; Karatas, Z.; Sibarita, J.B.; Rottner, K.; et al. Transient Activations of Rac1 at the Lamellipodium Tip Trigger Membrane Protrusion. Curr Biol 2019, 29, 2852-+, doi:10.1016/j.cub.2019.07.035. 35. Schaks, M.; Doring, H.; Kage, F.; Steffen, A.; Klunemann, T.; Blankenfeldt, W.; Stradal, T.; Rottner, K. RhoG and Cdc42 can contribute to Rac-dependent lamellipodia formation through WAVE regulatory complex-binding. Small GTPases 2021, 12, 122-132, doi:10.1080/21541248.2019.1657755. 36. Meyer, A.S.; Hughes-Alford, S.K.; Kay, J.E.; Castillo, A.; Wells, A.; Gertler, F.B.; Lauffenburger, D.A. 2D protrusion but not motility predicts growth factor-induced cancer cell migration in 3D collagen. J Cell Biol 2012, 197, 721-729, doi:10.1083/jcb.201201003. 37. Fort, L.; Batista, J.M.; Thomason, P.A.; Spence, H.J.; Whitelaw, J.A.; Tweedy, L.; Greaves, J.; Martin, K.J.; Anderson, K.I.; Brown, P.; et al. Fam49/CYRI interacts with Rac1 and locally suppresses protrusions. Nat Cell Biol 2018, 20, 1159-1171, doi:10.1038/s41556-018-0198-9. 38. Alexandrova, A.Y.; Chikina, A.S.; Svitkina, T.M. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. Int Rev Cell Mol Biol 2020, 356, 197-256, doi:10.1016/bs.ircmb.2020.06.002. 39. Broders-Bondon, F.; Nguyen Ho-Bouldoires, T.H.; Fernandez-Sanchez, M.E.; Farge, E. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol 2018, 217, 1571-1587, doi:10.1083/jcb.201701039. 40. Supplement to the points to consider in the production and testing of new drugs and biologicals produced by recombinant DNA technology: nucleic acid characterization and genetic stability. Biologicals 1993, 21, 81-83, doi:10.1006/biol.1993.1050. 41. Hochedlinger, K.; Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 2002, 415, 1035-1038, doi:10.1038/nature718. 42. Kilmartin, J.V.; Wright, B.; Milstein, C. Rat Monoclonal Antitubulin Antibodies Derived by Using a New Non-Secreting Rat-Cell Line. J Cell Biol 1982, 93, 576-582, doi:DOI 10.1083/jcb.93.3.576. 43. McLaughlin, P.; Grillo-Lopez, A.J.; Link, B.K.; Levy, R.; Czuczman, M.S.; Williams, M.E.; Heyman, M.R.; Bence-Bruckler, I.; White, C.A.; Cabanillas, F.; et al. Rituximab chimeric Anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J Clin Oncol 1998, 16, 2825-2833, doi:Doi 10.1200/Jco.1998.16.8.2825. 44. Trikha, M.; Corringham, R.; Klein, B.; Rossi, J.F. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: A review of the rationale and clinical evidence. Clin Cancer Res 2003, 9, 4653-4665. 45. Goldstein, G. A Randomized Clinical-Trial of Okt3 Monoclonal-Antibody for Acute Rejection of Cadaveric Renal-Transplants. New Engl J Med 1985, 313, 337-342. 46. Andreeff, M.; Bartal, A.; Feit, C.; Hirshaut, Y. Clonal stability and heterogeneity of hybridomas: analysis by multiparameter flow cytometry. Hybridoma 1985, 4, 277-287, doi:10.1089/hyb.1985.4.277. 47. Lattenmayer, C.; Loeschel, M.; Schriebl, K.; Steinfellner, W.; Sterovsky, T.; Trummer, E.; Vorauer-Uhl, K.; Muller, D.; Katinger, H.; Kunert, R. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones. Biotechnol Bioeng 2007, 96, 1118-1126, doi:10.1002/bit.21183. 48. Kim, N.S.; Byun, T.H.; Lee, G.M. Key determinants in the occurrence of clonal variation in humanized antibody expression of cho cells during dihydrofolate reductase mediated gene amplification. Biotechnol Prog 2001, 17, 69-75, doi:10.1021/bp000144h. 49. Chusainow, J.; Yang, Y.S.; Yeo, J.H.; Toh, P.C.; Asvadi, P.; Wong, N.S.; Yap, M.G. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng 2009, 102, 1182-1196, doi:10.1002/bit.22158. 50. Hunter, M.; Yuan, P.; Vavilala, D.; Fox, M. Optimization of Protein Expression in Mammalian Cells. Curr Protoc Protein Sci 2019, 95, e77, doi:10.1002/cpps.77. 51. Noh, S.M.; Shin, S.; Lee, G.M. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies. Sci Rep 2018, 8, 5361, doi:10.1038/s41598-018-23720-9. 52. Lai, T.; Yang, Y.; Ng, S.K. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 2013, 6, 579-603, doi:10.3390/ph6050579. 53. Li, F.; Vijayasankaran, N.; Shen, A.Y.; Kiss, R.; Amanullah, A. Cell culture processes for monoclonal antibody production. MAbs 2010, 2, 466-479, doi:10.4161/mabs.2.5.12720. 54. Mao, S.J.; France, D.S. Enhancement of limiting dilution in cloning mouse myeloma-spleen hybridomas by human low density lipoproteins. J Immunol Methods 1984, 75, 309-316, doi:10.1016/0022-1759(84)90114-5. 55. Staszewski, R. Cloning by Limiting Dilution - an Improved Estimate That an Interesting Culture Is Monoclonal. Yale J Biol Med 1984, 57, 865-868. 56. McFarland, D.C. Preparation of pure cell cultures by cloning. Methods Cell Sci 2000, 22, 63-66, doi:10.1023/a:1009838416621. 57. Greenfield, E.A. Single-Cell Cloning of Hybridoma Cells by Limiting Dilution. Cold Spring Harb Protoc 2019, 2019, doi:10.1101/pdb.prot103192. 58. Mathupala, S.P.; Sloan, A.E. An agarose-based cloning-ring anchoring method for isolation of viable cell clones. Biotechniques 2009, 46, 305-307, doi:10.2144/000113079. 59. Underwood, P.A.; Bean, P.A. Hazards of the Limiting-Dilution Method of Cloning Hybridomas. Journal of Immunological Methods 1988, 107, 119-128. 60. Evans, K.; Albanetti, T.; Venkat, R.; Schoner, R.; Savery, J.; Miro-Quesada, G.; Rajan, B.; Groves, C. Assurance of monoclonality in one round of cloning through cell sorting for single cell deposition coupled with high resolution cell imaging. Biotechnol Progr 2015, 31, 1172-1178, doi:10.1002/btpr.2145. 61. Pai, J.H.; Xu, W.; Sims, C.E.; Allbritton, N.L. Microtable arrays for culture and isolation of cell colonies. Anal Bioanal Chem 2010, 398, 2595-2604, doi:10.1007/s00216-010-3984-1. 62. Matsumura, T.; Tatsumi, K.; Noda, Y.; Nakanishi, N.; Okonogi, A.; Hirano, K.; Li, L.; Osumi, T.; Tada, T.; Kotera, H. Single-cell cloning and expansion of human induced pluripotent stem cells by a microfluidic culture device. Biochem Bioph Res Co 2014, 453, 131-137, doi:10.1016/j.bbrc.2014.09.081. 63. Yoshimoto, N.; Kida, A.; Jie, X.; Kurokawa, M.; Iijima, M.; Niimi, T.; Maturana, A.D.; Nikaido, I.; Ueda, H.R.; Tatematsu, K.; et al. An automated system for high-throughput single cell-based breeding. Sci Rep-Uk 2013, 3, doi:ARTN 119110.1038/srep01191. 64. Lin, C.H.; Hsiao, Y.H.; Chang, H.C.; Yeh, C.F.; He, C.K.; Salm, E.M.; Chen, C.; Chiu, I.M.; Hsu, C.H. A microfluidic dual-well device for high-throughput single-cell capture and culture. Lab Chip 2015, 15, 2928-2938, doi:10.1039/c5lc00541h. 65. Mcdonald, A.R.; Garbary, D.J.; Duckett, J.G. Rhodamine-Phalloidin Staining of F-Actin in Rhodophyta. Biotech Histochem 1993, 68, 91-98, doi:Doi 10.3109/10520299309104673. 66. Chazotte, B. Labeling cytoskeletal F-actin with rhodamine phalloidin or fluorescein phalloidin for imaging. Cold Spring Harb Protoc 2010, 2010, pdb prot4947, doi:10.1101/pdb.prot4947. 67. Espulgar, W.; Yamaguchi, Y.; Aoki, W.; Mita, D.; Saito, M.; Lee, J.K.; Tamiya, E. Single cell trapping and cell-cell interaction monitoring of cardiomyocytes in a designed microfluidic chip. Sensor Actuat B-Chem 2015, 207, 43-50, doi:10.1016/j.snb.2014.09.068. 68. Nguyen, T.A.; Yin, T.I.; Reyes, D.; Urban, G.A. Microfluidic Chip with Integrated Electrical Cell-Impedance Sensing for Monitoring Single Cancer Cell Migration in Three-Dimensional Matrixes. Analytical Chemistry 2013, 85, 11068-11076, doi:10.1021/ac402761s. 69. Yeh, C.F.; Lin, C.H.; Chang, H.C.; Tang, C.Y.; Lai, P.T.; Hsu, C.H. A Microfluidic Single-Cell Cloning (SCC) Device for the Generation of Monoclonal Cells. Cells 2020, 9, doi:10.3390/cells9061482. 70. Shen, F.M.; Zhu, L.; Ye, H.; Yang, Y.J.; Pang, D.W.; Zhang, Z.L. A High Throughput Micro-Chamber Array Device for Single Cell Clonal Cultivation and Tumor Heterogeneity Analysis. Sci Rep-Uk 2015, 5, doi:ARTN 1193710.1038/srep11937. 71. Pei, H.M.; Li, L.; Han, Z.J.; Wang, Y.G.; Tang, B. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. Lab on a Chip 2020, 20, 3854-3875, doi:10.1039/d0lc00577k. 72. Huang, X.W.; Yue, W.Q.; Liu, D.D.; Yue, J.B.; Li, J.Q.; Sun, D.; Yang, M.S.; Wang, Z.K. Monitoring the intracellular calcium response to a dynamic hypertonic environment. Sci Rep-Uk 2016, 6, doi:ARTN 2359110.1038/srep23591. 73. Altemose, N.; Maslan, A.; Rios-Martinez, C.; Lai, A.R.; White, J.A.; Streets, A. mu DamID: A Microfluidic Approach for Joint Imaging and Sequencing of Protein-DNA Interactions in Single Cells. Cell Systems 2020, 11, 354-+, doi:10.1016/j.cels.2020.08.015. 74. Lamanna, J.; Scott, E.Y.; Edwards, H.S.; Chamberlain, M.D.; Dryden, M.D.M.; Peng, J.X.; Mair, B.; Lee, A.; Chan, C.; Sklavounos, A.A.; et al. Digital microfluidic isolation of single cells for -Omics. Nature Communications 2020, 11, doi:ARTN 563210.1038/s41467-020-19394-5. 75. Sesen, M.; Whyte, G. Image-Based Single Cell Sorting Automation in Droplet Microfluidics. Sci Rep-Uk 2020, 10, doi:ARTN 873610.1038/s41598-020-65483-2.
|