帳號:guest(3.146.176.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏瑋
作者(外文):Chen, Bo-Wei
論文名稱(中文):單成分磁性奈米粒子以及立方體鈷鐵氧體@四氧化三鐵核殼結構的合成、分析、細胞測試與應用
論文名稱(外文):Preparations, Characterizations, In vitro Tests and Applications of Single-compositional Magnetic Nanoparticles, Cubic Magnetic CoFe2O4@Fe3O4 Core-shell Nanoparticles
指導教授(中文):饒達仁
指導教授(外文):Yao, Da-Jeng
口試委員(中文):胡尚秀
王子威
陳柏宇
陳智
陳振泰
口試委員(外文):Hu, Shang-Hsiu
Wang, Tzu-Wei
Chen, Po-Yu
Chen, Chih
Chen, Cheng-Tai
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:106035802
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:146
中文關鍵詞:超順磁性奈米粒子磁熱治療核殼結構磁性粒子二硫化鎢金屬有機骨架結構光熱效率測試
外文關鍵詞:Superparamagnetic iron oxide nanoparticlesMagnetic fluid hyperthermiaCore-shell magnetic particlesTungsten disulfideMagnetic nanocompositePhotothermal efficiency test
相關次數:
  • 推薦推薦:0
  • 點閱點閱:268
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
通過共沉法製備超順磁性氧化鐵奈米顆粒(SPIONs,Fe3O4)後,利用簡易球磨法將葡聚醣分子(分子量分別為10、40、70以及100 kDa)包覆到SPIONs表面,以進行葡聚醣包覆的超順磁性氧化鐵奈米顆粒(DSPIONs)的製備。在透射式電子顯微鏡(TEM)、超導量子干涉裝置磁力測定儀(SQUID)和動態光散射粒徑儀(DLS)的測量下,可知DSPIONs的尺寸微奈米級(<20 nm),並擁有高飽和磁化強度(55-65 emu g-1)以及超順磁性之特性。藉由X射線繞射儀(XRPD)及三維奈米尺度拉曼光譜(Raman)的使用,可證明奈米粒子由四氧化三鐵與γ態三氧化二鐵所組成。衰減全反射傅立葉變換紅外光譜(ATR-FTIR)和熱分析儀熱重分析(TGA)表徵證明表面的包覆層確定為葡聚醣分子。上述的結果表現出與往年期刊文獻不同的結果,文獻中表示使用分子量越大的高分子做為塗層的SPIONs理應擁有較小的淨飽和磁化量,而在此研究中使用不同分子量的DSPIONs卻擁有相近的數值,可見使用球磨法包覆葡聚醣於SPIONs上產生與過往研究部一樣的結果。在細胞測試方面,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay與普魯士藍染色法證明DSPIONs對肝癌細胞(SK-HEP1)擁有良好的生物相容性,並可以被SK-HEP1胞吞入內,使之可預期作為一種癌症治療的磁性藥劑載具。球磨後,DSPIONs進一步藉由不同的官能基-氨基(NH2)、羥基(OH)和羧基(COOH)修飾進行改性,以備將來應用。使用各種不同分子量的DSPIONs經各種官能基的修飾後(外接的氨基、羥基及羧基)後,展現出的物理性質(磁化量、粒徑、水和粒徑及表面的葡聚醣包覆量)同樣地不因高分子分子量的不同而有明顯差異。DSPIONs和那些其他團隊之SPIONs樣品相比,具有良好的性能。有望用於的磁振造影(MRI)、磁熱治療(hyperthermia)及藥物輸送(drug delivery)。
  近年來,利用鐵基磁性奈米粒子的磁流體磁熱治療與標靶化療法的整合被視為具潛力的癌症療法。但是,因為鐵基粒子的磁化曲線過於狹小,粒子的劑量濃度往往需要為極大值,才可達到有效的熱治療效果,然而對動物體的傷害過大,進而生副作用。為了加強磁性粒子的磁性性質以增強其熱治療效果,在適當的磁化曲線範圍內,擴張磁化曲線為較佳的選擇。在此部分研究中,我們合成了球狀以及立方體狀的氧化鐵、鈷鐵氧體粒子以及鈷鐵氧體基核殼結構粒子,藉由建構核殼結構奈米粒子研究其磁晶體異向性和表面異向性(magnetocrystalline and surface anisotropy)對粒子翻轉(relaxation)的影響,藉由粒子結構設計調整Néel and Brownian翻轉參數,以此優化磁熱治療效果。此部分最終將CoFe2O4@Fe3O4核殼磁性奈米粒子包覆上抗癌藥物temozolomide (TMZ) 以及lactoferrin (Lf),並在外加交變場下(50 kHz, 200 G)進行磁熱測試。細胞實驗使用老鼠星形細胞瘤ALTS1C1細胞系(mouse astrocytoma ALTS1C1 cell line)進行體外及離體測試(in vitro and ex vivo tests),根據觀察,經外加交變場操作後,細胞周圍出現大量的細胞殘骸,這個狀況顯示,除了磁熱和藥物效果外,極可能在細胞中出現機械扭力(mechanical torques),導致癌細胞死亡,產生治療效果。這個結果顯示立方體核殼結構有作為磁性藥物的潛力。
  除了上述的複合式治療法外,透過包含了2種或2種以上不同材料來組合、獲得多種複合性質的片狀結構,廣受多個研究單位注意。部分團隊利用二硫化鎢(WS2)或二硫化鉬(MoS2)奈米薄片(nanosheets)作為硫化物的光電特性配合上磁性奈米顆粒(MNPs)非接觸性和可控性,組合成MNPs decorated WS2多層結構而成為熱門題目。在本研究中,WS2 nanosheets被選為光熱療法(photothermal therapies)的吸收與放熱測試材料,通過吸收808 nm雷射並產生熱量來進行測試。為了合成用於奈米複合結構(nanocomposite)的MNPs,研究中製作了多種MNPs並進行比較,包含球形與立方氧化鐵、鈷鐵氧體和鈷鐵氧體@氧化鐵之核/殼結構奈米顆粒。為了研究性質和可行性,使用TEM、SQUID、ATR-FTIR、XRD和拉曼光譜進行測試。最後,通過進行808 nm雷射測試了用鈷鐵氧體@氧化鐵之核殼奈米粒子修飾的二硫化鎢奈米薄片(WS2/CoFe2O4@Fe3O4)之光熱性質。結果顯示其擁有望作為遠程磁性治療工具的潛力。
To prepare the dextran-coated superparamagnetic iron oxide nanoparticles (DSPIONs) coated with dextran (molecular mass (Mdextran) of 10, 40, 70 and 100 kDa), a simple ball milling method was implemented in the presence of dextran molecules and superparamagnetic iron oxide nanoparticles (SPIONs) after co-precipitation method. The saturation magnetization (Ms) and surface coating percentage (thermogravimetric analysis) of the DSPIONs with various Mdextran were similar to each other and independent on Mdextran. The results were different from the statistical data from previous studies: DSPIONs using increasing Mdextran were accompanied by decreasing Ms and increasing surface coating in conventional co-precipitation protocols without the implementation of ball milling method. The DSPIONs were characterized with transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) magnetometry, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffractometer (XRD), 3D nanometer scale Raman spectroscopy (Raman) and thermogravimetric analysis (TGA) of thermal analyzer to confirm the properties of morphologies, magnetic properties, hydrodynamic diameter in DI water, surface coating and modified functional groups, crystalline structures, phases and weighty percentages of dextran on the SPIONs, respectively. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated the ball-milled DSPIONs exhibited low cytotoxicity in human hepatoma cells (SK-HEP1), and the implementation of Prussian blue staining proved the DSPIONs were able to be uptaken by SK-HEP1. There was no obvious difference between the ball-milled DSPIONs with various Mdextran. According to the results, it demonstrated the ball-milling process might be potential for the SPION preparation in biomedical field. The DSPIONs were further modified with several functional groups – external amino, hydroxyl and carboxyl groups – for the future applications which need to conjugate with antibodies or drugs with specific groups. The modified DSPIONs possess similar physical properties but different surface charges with DSPIONs. Similar to DSPIONs, the modified DSPIONs using various Mdextran performed similar magnetic properties, core size, hydrodynamic diameters and dextran contents in whole particles, independent on Mdextran.
 In recent years, the dual treatment integrating magnetic fluid hyperthermia (MFH) and chemotherapy, using SPIONs, is one of potential tumor therapies. To achieve sufficient MFH efficacy, it is essential to satisfy the thermal efficiency by increasing the concentration of the administrated iron due to their narrow magnetization curves, but an inappropriately large administration concentration causes deterioration of an animal’s health. Expanding the magnetization curve is one strategy to optimize the MFH efficacy. To prove the greater magnetic properties of cubic core-shell MNPs we prepared, there were also several different shaped MNPs produced, including spherical and cubic SPIONs, CoFe2O4 and CoFe2O4 based core-shell nanoparticles. This part describes constructuring core-shell cubes causes the coercivity and magnetization to become significantly enhanced related to magnetic nanoparticles (MNPs) of a single composition, of which the magnetocrystalline and surface anisotropy act as roles for MNP relaxation; Néel and Brownian relaxation can be structurally adjusted for the particles to maximize the treatment efficacy in cooperation with an alternating magnetic field (AFM, 50 kHz, 200 G) system. Furthermore, core-shell CoFe2O4@Fe3O4 (cobalt ferrite core coated with iron oxide shell) cubes coated with temozolomide (TMZ) and lactoferrin (Lf) for the magnetothermal penetration delivery. Their biocompatibility on the mouse astrocytoma ALTS1C1 cell line was tested in in vitro and ex vivo in the absence of an AMF. After an AMF implemented, much cell debris was observed, indicating that mechanical torques contributed from endocytosed MNPs exhibited lethal effects besides magnetothermal and chemotherapeutic effects. The results reveal core-shell cubes have a potential to treat tumors as a magnetic drug.
 Other to the dual integrated treatments using MNPs, nanocomposite nanosheets merit of attention about the combination between 2 or more properties from different materials. The tungsten disulfide (WS2) nanosheets decorated with MNPs become popular topic because of its optoelectronic or photothermal properties of the sulfides and contactless controllability of the MNPs. In this work, WS2 nanosheets were chosen as the potential absorbing and exothermic material for photothermal therapies, by absorbing 808 nm laser and generating the heats to kill the cancer cells. The cubic core-shell MNPs, previously mentioned, were integrated into the applications of WS2 nanosheets. To investigate the properties and feasibility, TEM, SQUID, ATR-FTIR, XRD and Raman spectroscopy were used. Finally, the photothermal properties of WS2 nanosheets decorated with cobalt ferrite@iron oxide core-shell nanoparticles (WS2/CoFe2O4@Fe3O4) were tested by the irradiation of 808 nm laser. The results revealed it could be one of the excellent promising candidates as a remote magnetic treatment.
摘要 I
Abstract IV
前言與感謝 VII
Table of Contents IX
Table of Figures XII
1. Introduction 18
The studies for the dextran coated superparamagnetic iron oxide nanoparticles (DSPIONs) 19
The enhancements of Ms and coercivity (Hc) by constructuring core-shell MNPs for magnetic fluid hyperthermia (MFH) and chemotherapy integrated treatments 21
The photothermal studies for the WS2-based nanocomposite structures decorated by the cubic hydrophilic cobalt ferrite@iron oxide core-shell MNP (WS2/cubic CoFe2O4@Fe3O4) 23
2. Theoretical Background and Literature Review 25
The classification of magnetic materials 25
Hysteresis phenomenon 29
Evaluation of MFH effects through properties of MNPs 31
The influences of particle shapes on the magnetothermal effects 33
The properties of core-shell structures 34
The applications and design basis of polymer coated MNPs 34
The preparation and applications of dextran-coated superparamagnetic nanoparticles in other research groups 36
The applications and properties of tungsten disulfides (WS2) nanosheets 44
3. Materials and Methods 47
3.1 Study of ball milling effects on DSPIONs and their further surface modifications 47
3.1.1 Preparation of bare superparamagnetic iron oxide nanoparticles (Bare SPIONs) 47
3.1.2 Preparation of dextran coated superparamagnetic iron oxide nanoparticles (DSPIONs) 48
3.1.3 Cell culture of SK-HEP1 cells with DSPIONs 48
3.1.4 MTT assay of DSPIONs in SK-HEP1 cells 49
3.1.5 Internalization distribution of DSPIONs in SK-HEP1 cells demonstrated by Prussian blue staining 49
3.1.6 Modification of 1-aminopropanyl groups and 1-hydroxypropanyl groups on DSPIONs (D-NH2 and D-OH SPIONs) 50
3.1.7 The modification of 1-carboxymethyl groups on DSPIONs (D-COOH SPIONs) 51
3.2 Cubic CoFe2O4@Fe3O4 core-shell nanoparticles and WS2 51
3.2.1 Preparation of spherical OAm-Fe3O4 52
3.2.2 Preparation of spherical OAm-CoFe2O4 52
3.2.3 Preparation of cubic OA-Fe3O4 52
3.2.4 Preparation of spherical OA-CoFe2O4@Fe3O4 53
3.2.5 Preparation of cubic OA-CoFe2O4@Fe3O4 53
3.2.6 Ligand exchange from hydrophobic coating (OA or OAm) to hydrophilic coating 54
3.2.7 Preparation of WS2 nanosheets 54
3.2.8 Preparation of WS2 decorated with cubic DHCA-CoFe2O4@Fe3O4 (WS2/cubic DHCA-CoFe2O4@Fe3O4, WS2/cubic core-shell structures) 55
3.3 Cubic CoFe2O4@Fe3O4 core-shell nanoparticles and their magnetothermal and chemotherapy integrated treatments in the in vitro and ex vivo tests 56
3.3.1 Temozolomide (TMZ) conjugation to carboxyl hydrophilic coating 56
3.3.2 Lactoferrin (Lf) conjugation to carboxyl hydrophilic coating 56
3.3.3 Primary hyperthermia tests 57
3.3.4 In vitro biocompatibility and cytotoxicity tests of MNPs 57
3.3.5 In vitro MNP uptake tests 58
3.3.6 Ex vivo MNP cytotoxicity and uptake evaluation tests using microfluidic chip (tumor on a chip) 58
3.4 Analytical methods for physical characterization 60
4. Results and Discussions 63
4.1 Dextran-coated magnetic nanoparticles (DSPIONs) 63
4.1.1 Bare and dextran coated SPIONs (Bare SPIONs and DSPIONs) 63
4.1.2 The functional group (NH2, OH, COOH) modified dextran coated SPIONs (D-NH2, D-OH and D-COOH SPIONs) 72
4.2 Cubic CoFe2O4@Fe3O4 core-shell MNPs capped WS2 nanosheets 86
4.2.1 The morphologic characterization of different shaped metal oxide core, core-shell and nanocomposite structures 86
4.2.2 The magnetic properties and lattice structures of different shaped metal oxide core, core-shell and nanocomposite structures 95
4.2.3 The characterization of surface coatings on different shaped metal oxide core, core-shell and nanocomposite structures 97
4.2.4 The photothermal tests of the nanocomposite structures (P-type and B-type WS2/cubic DHCA-CoFe2O4@Fe3O4) 99
4.3 Magnetocrystalline anisotropy and relaxation Controls of cubic CoFe2O4@Fe3O4 core-shell MNPs for magnetothermal penetration delivery 102
5. Conclusion 132
References 135
1. Kim, D.; Zhang, Y.; Kehr, J.; Klason, T.; Bjelke, B.; Muhammed, M., Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. Journal of Magnetism and Magnetic Materials 2001, 225 (1-2), 256-261.
2. Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E., Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release 2001, 70 (1-2), 1-20.
3. Johannsen, M.; Gneveckow, U.; Eckelt, L.; Feussner, A.; Waldöfner, N.; Scholz, R.; Deger, S.; Wust, P.; Loening, S.; Jordan, A., Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. International journal of hyperthermia 2005, 21 (7), 637-647.
4. Wada, S.; Tazawa, K.; Furuta, I.; Nagae, H., Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma. Oral diseases 2003, 9 (4), 218-223.
5. Linh, P.; Phuc, N.; Hong, L.; Uyen, L.; Chien, N.; Nam, P.; Quy, N.; Nhung, H.; Phong, P.; Lee, I.-J., Dextran coated magnetite high susceptibility nanoparticles for hyperthermia applications. Journal of Magnetism and Magnetic Materials 2018, 460, 128-136.
6. Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E., Magnetic nanoparticle design for medical diagnosis and therapy. Journal of materials chemistry 2004, 14 (14), 2161-2175.
7. Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y., Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Materials Science and Engineering: C 2017, 70, 763-771.
8. Liu, Q.; Song, L.; Chen, S.; Gao, J.; Zhao, P.; Du, J., A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials 2017, 114, 23-33.
9. Lu, A. H.; Salabas, E. e. L.; Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition 2007, 46 (8), 1222-1244.
10. Lodhia, J.; Mandarano, G.; Ferris, N.; Eu, P.; Cowell, S., Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI. Biomedical imaging and intervention journal 2010, 6 (2), e12.
11. Wang, Y.-X. J.; Hussain, S. M.; Krestin, G. P., Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. European radiology 2001, 11 (11), 2319-2331.
12. Corot, C.; Robert, P.; Idée, J.-M.; Port, M., Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced drug delivery reviews 2006, 58 (14), 1471-1504.
13. Veiseh, O.; Gunn, J. W.; Zhang, M., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced drug delivery reviews 2010, 62 (3), 284-304.
14. Helal, N.; Osami, A.; Helmy, A.; McDonald, T.; Shaaban, L.; Nounou, M., Non-viral gene delivery systems: hurdles for bench-to-bedside transformation. Die Pharmazie-An International Journal of Pharmaceutical Sciences 2017, 72 (11), 627-693.
15. Singh, N.; Jenkins, G. J.; Asadi, R.; Doak, S. H., Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano reviews 2010, 1 (1), 5358.
16. Harris, J. M.; Chess, R. B., Effect of pegylation on pharmaceuticals. Nature reviews Drug discovery 2003, 2 (3), 214-221.
17. Hayashi, K.; Nakamura, M.; Sakamoto, W.; Yogo, T.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Ishimura, K., Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 2013, 3 (6), 366.
18. Park, Y.; Whitaker, R. D.; Nap, R. J.; Paulsen, J. L.; Mathiyazhagan, V.; Doerrer, L. H.; Song, Y.-Q.; Hürlimann, M. D.; Szleifer, I.; Wong, J. Y., Stability of superparamagnetic iron oxide nanoparticles at different pH values: experimental and theoretical analysis. Langmuir 2012, 28 (15), 6246-6255.
19. Khalkhali, M.; Rostamizadeh, K.; Sadighian, S.; Khoeini, F.; Naghibi, M.; Hamidi, M., The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study. DARU Journal of Pharmaceutical Sciences 2015, 23 (1), 45.
20. Liu, G.; Banerjee, S. R.; Yang, X.; Yadav, N.; Lisok, A.; Jablonska, A.; Xu, J.; Li, Y.; Pomper, M. G.; van Zijl, P., A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nature biomedical engineering 2017, 1 (12), 977-982.
21. Bae, K. H.; Park, M.; Do, M. J.; Lee, N.; Ryu, J. H.; Kim, G. W.; Kim, C.; Park, T. G.; Hyeon, T., Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS nano 2012, 6 (6), 5266-5273.
22. Peng, M.; Li, H.; Luo, Z.; Kong, J.; Wan, Y.; Zheng, L.; Zhang, Q.; Niu, H.; Vermorken, A.; Van de Ven, W., Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale 2015, 7 (25), 11155-11162.
23. Pilloni, M.; Nicolas, J.; Marsaud, V.; Bouchemal, K.; Frongia, F.; Scano, A.; Ennas, G.; Dubernet, C., PEGylation and preliminary biocompatibility evaluation of magnetite–silica nanocomposites obtained by high energy ball milling. International journal of pharmaceutics 2010, 401 (1-2), 103-112.
24. Martina, M.-S.; Fortin, J.-P.; Ménager, C.; Clément, O.; Barratt, G.; Grabielle-Madelmont, C.; Gazeau, F.; Cabuil, V.; Lesieur, S., Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. Journal of the American Chemical Society 2005, 127 (30), 10676-10685.
25. Shih, L. B.; Goldenberg, D. M.; Xuan, H.; Lu, H.; Sharkey, R. M.; Hall, T. C., Anthracycline immunoconjugates prepared by a site-specific linkage via an amino-dextran intermediate carrier. Cancer research 1991, 51 (16), 4192-4198.
26. Morales, M. d. P.; Veintemillas-Verdaguer, S.; Montero, M.; Serna, C.; Roig, A.; Casas, L.; Martinez, B.; Sandiumenge, F., Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chemistry of Materials 1999, 11 (11), 3058-3064.
27. Bordelon, D. E.; Cornejo, C.; Grüttner, C.; Westphal, F.; DeWeese, T. L.; Ivkov, R., Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. Journal of Applied Physics 2011, 109 (12), 124904.
28. Lawaczeck, R.; Bauer, H.; Frenzel, T.; Hasegawa, M.; Ito, Y.; Kito, K.; Miwa, N.; Tsutsui, H.; Vogler, H.; Weinmann, H.-J., Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting: pre-clinical profile of SH U555A. Acta Radiologica 1997, 38 (4), 584-597.
29. Jung, C. W.; Jacobs, P., Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magnetic resonance imaging 1995, 13 (5), 661-674.
30. Dennis, C. L.; Krycka, K. L.; Borchers, J. A.; Desautels, R. D.; Van Lierop, J.; Huls, N. F.; Jackson, A. J.; Gruettner, C.; Ivkov, R., Internal magnetic structure of nanoparticles dominates time‐dependent relaxation processes in a magnetic field. Advanced Functional Materials 2015, 25 (27), 4300-4311.
31. Lee, H.; Lee, E.; Kim, D. K.; Jang, N. K.; Jeong, Y. Y.; Jon, S., Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. Journal of the American Chemical Society 2006, 128 (22), 7383-7389.
32. Mukhopadhyay, A.; Joshi, N.; Chattopadhyay, K.; De, G., A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome C. ACS applied materials & interfaces 2012, 4 (1), 142-149.
33. Purushotham, S.; Chang, P.; Rumpel, H.; Kee, I.; Ng, R.; Chow, P.; Tan, C.; Ramanujan, R., Thermoresponsive core–shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 2009, 20 (30), 305101.
34. Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Sakamoto, W.; Yogo, T.; Ishimura, K., Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 2014, 4 (8), 834.
35. Liu, X. L.; Fan, H. M.; Yi, J. B.; Yang, Y.; Choo, E. S. G.; Xue, J. M.; Ding, J., Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. Journal of Materials Chemistry 2012, 22 (17), 8235-8244.
36. Müller, K.; Skepper, J. N.; Posfai, M.; Trivedi, R.; Howarth, S.; Corot, C.; Lancelot, E.; Thompson, P. W.; Brown, A. P.; Gillard, J. H., Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 2007, 28 (9), 1629-1642.
37. Grüttner, C.; Müller, K.; Teller, J.; Westphal, F., Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. International Journal of Hyperthermia 2013, 29 (8), 777-789.
38. Asín, L.; Ibarra, M.; Tres, A.; Goya, G., Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharmaceutical research 2012, 29 (5), 1319-1327.
39. Aires, A.; Cabrera, D.; Alonso‐Pardo, L. C.; Cortajarena, A. L.; Teran, F. J., Elucidation of the physicochemical properties ruling the colloidal stability of iron oxide nanoparticles under physiological conditions. ChemNanoMat 2017, 3 (3), 183-189.
40. Li, H.; Yan, K.; Shang, Y.; Shrestha, L.; Liao, R.; Liu, F.; Li, P.; Xu, H.; Xu, Z.; Chu, P. K., Folate-bovine serum albumin functionalized polymeric micelles loaded with superparamagnetic iron oxide nanoparticles for tumor targeting and magnetic resonance imaging. Acta biomaterialia 2015, 15, 117-126.
41. Li, Q.; Kartikowati, C. W.; Horie, S.; Ogi, T.; Iwaki, T.; Okuyama, K., Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific reports 2017, 7 (1), 1-7.
42. Unterweger, H.; Janko, C.; Schwarz, M.; Dézsi, L.; Urbanics, R.; Matuszak, J.; Őrfi, E.; Fülöp, T.; Bäuerle, T.; Szebeni, J., Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. International journal of nanomedicine 2017, 12, 5223.
43. Gonzales-Weimuller, M.; Zeisberger, M.; Krishnan, K. M., Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. Journal of magnetism and magnetic materials 2009, 321 (13), 1947-1950.
44. Huang, C.-Y.; Ger, T.-R.; Wei, Z.-H.; Lai, M.-F., Compare analysis for the nanotoxicity effects of different amounts of endocytic iron oxide nanoparticles at single cell level. PLoS One 2014, 9 (5), e96550.
45. Huang, C.-Y.; Chen, P.-J.; Ger, T.-R.; Hu, K.-H.; Peng, Y.-H.; Fu, P.-W.; Chen, J.-Y.; Wei, Z.-H., Optimization of magnetic labeling process for intracellular hyperthermia in cervical cancer cells. IEEE transactions on magnetics 2013, 50 (1), 1-4.
46. Rahaman, M. N., Ceramic processing. Kirk‐Othmer Encyclopedia of Chemical Technology 2000, 1-98.
47. Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J., Applications of magnetic nanoparticles in biomedicine. Journal of physics D: Applied physics 2003, 36 (13), R167.
48. Bucak, S.; Altan, C., Magnetic nanoparticles and cancer. In Nanotechnology in Cancer, Elsevier: 2017; pp 105-137.
49. Silva, A. C.; Oliveira, T. R.; Mamani, J. B.; Malheiros, S. M.; Malavolta, L.; Pavon, L. F.; Sibov, T. T.; Amaro Jr, E.; Tannús, A.; Vidoto, E. L., Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. International journal of nanomedicine 2011, 6, 591.
50. Cheon, J.; Kang, N.-J.; Lee, S.-M.; Lee, J.-H.; Yoon, J.-H.; Oh, S. J., Shape evolution of single-crystalline iron oxide nanocrystals. Journal of the American Chemical Society 2004, 126 (7), 1950-1951.
51. Sun, C.; Sze, R.; Zhang, M., Folic acid‐PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2006, 78 (3), 550-557.
52. Donadel, K.; Felisberto, M. D.; Fávere, V. T.; Rigoni, M.; Batistela, N. J.; Laranjeira, M. C., Synthesis and characterization of the iron oxide magnetic particles coated with chitosan biopolymer. Materials Science and Engineering: C 2008, 28 (4), 509-514.
53. Molday, R. S.; Mackenzie, D., Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of immunological methods 1982, 52 (3), 353-367.
54. Ravikumar, C.; Kumar, S.; Bandyopadhyaya, R., Aggregation of dextran coated magnetic nanoparticles in aqueous medium: Experiments and Monte Carlo simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 403, 1-6.
55. Song, C.; Wang, X.-X.; Zhang, J.; Nie, G.-D.; Luo, W.-L.; Fu, J.; Ramakrishna, S.; Long, Y.-Z., Electric field-assisted in situ precise deposition of electrospun γ-Fe2O3/polyurethane nanofibers for magnetic hyperthermia. Nanoscale research letters 2018, 13 (1), 1-11.
56. Liu, S.; Shi, D.; Chen, L.; Yan, Y.; Wang, X.; Song, Y.; Pu, S.; Liang, Y.; Zhao, Y.; Zhang, Y., Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: an amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy. Nanoscale 2021, 13 (6), 3613-3626.
57. Huang, H.-T.; Lin, Y.-H.; Ger, T.-R.; Wei, Z.-H., Detection of magnetically labeled cells using wavelike permalloy nanowires. Applied Physics Express 2013, 6 (3), 037001.
58. Carrey, J.; Mehdaoui, B.; Respaud, M., Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of Applied Physics 2011, 109 (8), 083921.
59. Balakrishnan, P. B.; Silvestri, N.; Fernandez‐Cabada, T.; Marinaro, F.; Fernandes, S.; Fiorito, S.; Miscuglio, M.; Serantes, D.; Ruta, S.; Livesey, K., Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy. Advanced Materials 2020, 32 (45), 2003712.
60. Dennis, C. L.; Ivkov, R., Physics of heat generation using magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia 2013, 29 (8), 715-729.
61. Hufschmid, R.; Arami, H.; Ferguson, R. M.; Gonzales, M.; Teeman, E.; Brush, L. N.; Browning, N. D.; Krishnan, K. M., Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 2015, 7 (25), 11142-11154.
62. Kwon, H. J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B. H.; Kim, D.; Hyeon, T., Metal Oxide Nanoparticles: Large‐Scale Synthesis and Medical Applications of Uniform‐Sized Metal Oxide Nanoparticles. Advanced Materials 2018, 30 (42), 1870319.
63. Togashi, T.; Takami, S.; Kawakami, K.; Yamamoto, H.; Naka, T.; Sato, K.; Abe, K.; Adschiri, T., Continuous hydrothermal synthesis of 3, 4-dihydroxyhydrocinnamic acid-modified magnetite nanoparticles with stealth-functionality against immunological response. Journal of Materials Chemistry 2012, 22 (18), 9041-9045.
64. Bae, Y. H.; Park, K., Targeted drug delivery to tumors: myths, reality and possibility. Journal of controlled release 2011, 153 (3), 198.
65. Gonsalves, K.; Halberstadt, C.; Laurencin, C. T.; Nair, L., Biomedical nanostructures. John Wiley & Sons: 2007.
66. Zhou, Z.; Zhu, X.; Wu, D.; Chen, Q.; Huang, D.; Sun, C.; Xin, J.; Ni, K.; Gao, J., Anisotropic shaped iron oxide nanostructures: controlled synthesis and proton relaxation shortening effects. Chemistry of Materials 2015, 27 (9), 3505-3515.
67. Polishchuk, D.; Nedelko, N.; Solopan, S.; Ślawska-Waniewska, A.; Zamorskyi, V.; Tovstolytkin, A.; Belous, A., Profound Interfacial Effects in CoFe 2 O 4/Fe 3 O 4 and Fe 3 O 4/CoFe 2 O 4 Core/Shell Nanoparticles. Nanoscale research letters 2018, 13 (1), 1-10.
68. Yanes, R.; Chubykalo-Fesenko, O.; Kachkachi, H.; Garanin, D.; Evans, R.; Chantrell, R., Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy. Physical review B 2007, 76 (6), 064416.
69. Martinez-Boubeta, C.; Simeonidis, K.; Makridis, A.; Angelakeris, M.; Iglesias, O.; Guardia, P.; Cabot, A.; Yedra, L.; Estradé, S.; Peiró, F., Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Scientific reports 2013, 3 (1), 1-8.
70. Kovalenko, M. V.; Bodnarchuk, M. I.; Lechner, R. T.; Hesser, G.; Schäffler, F.; Heiss, W., Fatty acid salts as stabilizers in size-and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. Journal of the American Chemical Society 2007, 129 (20), 6352-6353.
71. Noh, S.-h.; Na, W.; Jang, J.-t.; Lee, J.-H.; Lee, E. J.; Moon, S. H.; Lim, Y.; Shin, J.-S.; Cheon, J., Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano letters 2012, 12 (7), 3716-3721.
72. Shen, Z.; Ye, H.; Yi, X.; Li, Y., Membrane wrapping efficiency of elastic nanoparticles during endocytosis: Size and shape matter. ACS nano 2018, 13 (1), 215-228.
73. Zeng, H.; Sun, S.; Li, J.; Wang, Z.; Liu, J., Tailoring magnetic properties of core∕ shell nanoparticles. Applied physics letters 2004, 85 (5), 792-794.
74. Shahbahrami, B.; Rabiee, S.; Shidpoor, R., An Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications. Advanced Ceramics Progress 2020, 6 (1), 1-15.
75. Lavorato, G. C.; Das, R.; Masa, J. A.; Phan, M.-H.; Srikanth, H., Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. Nanoscale Advances 2021, 3 (4), 867-888.
76. Gavrilov‐Isaac, V.; Neveu, S.; Dupuis, V.; Taverna, D.; Gloter, A.; Cabuil, V., Synthesis of Trimagnetic Multishell MnFe2O4@ CoFe2O4@ NiFe2O4 Nanoparticles. Small 2015, 11 (22), 2614-2618.
77. Lee, J.-H.; Jang, J.-t.; Choi, J.-s.; Moon, S. H.; Noh, S.-h.; Kim, J.-w.; Kim, J.-G.; Kim, I.-S.; Park, K. I.; Cheon, J., Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature nanotechnology 2011, 6 (7), 418-422.
78. Liu, B.; Li, C.; Chen, Y.; Zhang, Y.; Hou, Z.; Huang, S.; Lin, J., Multifunctional NaYF 4: Yb, Er@ mSiO2@ Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery. Nanoscale 2015, 7 (5), 1839-1848.
79. Goyal, K.; Konar, A.; Kumar, B. H.; Koul, V., Lactoferrin-conjugated pH and redox-sensitive polymersomes based on PEG-SS-PLA-PCL-OH boost delivery of bacosides to the brain. Nanoscale 2018, 10 (37), 17781-17798.
80. Tomitaka, A.; Arami, H.; Gandhi, S.; Krishnan, K. M., Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 2015, 7 (40), 16890-16898.
81. Su, Y.-L.; Chen, K.-T.; Sheu, Y.-C.; Sung, S.-Y.; Hsu, R.-S.; Chiang, C.-S.; Hu, S.-H., The penetrated delivery of drug and energy to tumors by lipo-graphene nanosponges for photolytic therapy. ACS nano 2016, 10 (10), 9420-9433.
82. Zhang, R. X.; Ahmed, T.; Li, L. Y.; Li, J.; Abbasi, A. Z.; Wu, X. Y., Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale 2017, 9 (4), 1334-1355.
83. Chaubet, F.; Champion, J.; Maïga, O.; Mauray, S.; Jozefonvicz, J., Synthesis and structure—anticoagulant property relationships of functionalized dextrans: CMDBS. Carbohydrate polymers 1995, 28 (2), 145-152.
84. Shih, L. B.; Primus, F. J.; Goldenberg, M. D., Diagnostic and therapeutic antibody conjugates. Google Patents: 1991.
85. Pumera, M.; Sofer, Z.; Ambrosi, A., Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A 2014, 2 (24), 8981-8987.
86. Santiago, Y.; Cabrera, C. R., Surface Analysis and Electrochemistry of MoS2 Thin Films Prepared by Intercalation‐Exfoliation Techniques. Journal of the Electrochemical Society 1994, 141 (3), 629.
87. Schneemeyer, L. F.; Wrighton, M. S., n-Type molybdenum diselenide-based photoelectrochemical cells: Evidence for Fermi level pinning and comparison of the efficiency for conversion of light to electricity with various solvent/halogen/halide combinations. Journal of the American Chemical Society 1980, 102 (23), 6964-6971.
88. Yang, G.; Gong, H.; Liu, T.; Sun, X.; Cheng, L.; Liu, Z., Two-dimensional magnetic WS2@ Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 2015, 60, 62-71.
89. Manabe, Y.; Tsubota, T.; Haruta, Y.; Okazaki, M.; Haisa, S.; Nakamura, K.; Kimura, I., Production of a monoclonal antibody-bleomycin conjugate utilizing dextran T-40 and the antigen-targeting cytotoxicity of the conjugate. Biochemical and biophysical research communications 1983, 115 (3), 1009-1014.
90. Xu, Z.; Shen, C.; Hou, Y.; Gao, H.; Sun, S., Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chemistry of Materials 2009, 21 (9), 1778-1780.
91. Mishra, A.; Jha, B., Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresource technology 2009, 100 (13), 3382-3386.
92. Lee, N.; Schuck, P. J.; Nico, P. S.; Gilbert, B., Surface enhanced Raman spectroscopy of organic molecules on magnetite (Fe3O4) nanoparticles. The journal of physical chemistry letters 2015, 6 (6), 970-974.
93. Cho, D.; Drzal, L. T., FT-IR studies on imidization and end group reaction behaviors of a phenylethynyl terminated imide oligomer. Air Force Office of Scientific Research (nd) 2012.
94. Harris, R. A.; Shumbula, P. M.; van der Walt, H. t., Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling. Langmuir 2015, 31 (13), 3934-3943.
95. Silva, A. C.; Oliveira, T. R.; Mamani, J. B.; Malheiros, S. M. F.; Malavolta, L.; Pavon, L. F.; Sibov, T. T.; Amaro, E. Jr; Tannús, A.; Vidoto, E. L. G.; Martins, M. J.; Santos, R. S.; Gamarra, L. F., Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. International Journal of Nanomedicine 2011, 6, 591.
96. Fortin, J.-P.; Wilhelm, C.; Servais, J.; Ménager, C.; Bacri, J.-C.; Gazeau, F., Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society 2007, 129 (9), 2628-2635.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *