|
1. Hessvik, N.P. and A. Llorente, Current knowledge on exosome biogenesis and release. Cellular and molecular life sciences : CMLS, 2018. 75(2): p. 193-208. 2. Jansen, F., G. Nickenig, and N. Werner, Extracellular Vesicles in Cardiovascular Disease. Circulation Research, 2017. 120(10): p. 1649-1657. 3. Olson, E.N., MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Science translational medicine, 2014. 6(239): p. 239ps3-239ps3. 4. Dimmeler, S., Cardiovascular disease review series. EMBO molecular medicine, 2011. 3(12): p. 697-697. 5. Benjamin, E.J., et al., Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation, 2017. 135(10): p. e146-e603. 6. Kakria, P., N.K. Tripathi, and P. Kitipawang, A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors. International journal of telemedicine and applications, 2015. 2015: p. 373474-373474. 7. Bei, Y., et al., Extracellular Vesicles in Cardiovascular Theranostics. Theranostics, 2017. 7(17): p. 4168-4182. 8. Zlotogorski-Hurvitz, A., et al., Human saliva-derived exosomes: comparing methods of isolation. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 2015. 63(3): p. 181-189. 9. Baranyai, T., et al., Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLOS ONE, 2015. 10(12): p. e0145686. 10. Knepper, M.A. and T. Pisitkun, Exosomes in urine: Who would have thought…? Kidney International, 2007. 72(9): p. 1043-1045. 11. Zempleni, J., Milk exosomes: beyond dietary microRNAs. Genes & nutrition, 2017. 12: p. 12-12. 12. György, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 2011. 68(16): p. 2667-2688. 13. György, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and molecular life sciences : CMLS, 2011. 68(16): p. 2667-2688. 14. Robbins, P.D., A. Dorronsoro, and C.N. Booker, Regulation of chronic inflammatory and immune processes by extracellular vesicles. The Journal of clinical investigation, 2016. 126(4): p. 1173-1180. 15. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of cell biology, 2013. 200(4): p. 373-383. 16. Peterson, M.F., et al., Integrated systems for exosome investigation. Methods, 2015. 87: p. 31-45. 17. Tan, S., et al., Cell or cell membrane-based drug delivery systems. Theranostics, 2015. 5(8): p. 863-881. 18. Tkach, M., J. Kowal, and C. Théry, Why the need and how to approach the functional diversity of extracellular vesicles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018. 373(1737): p. 20160479. 19. Dougherty, J.A., et al., Potential Role of Exosomes in Mending a Broken Heart: Nanoshuttles Propelling Future Clinical Therapeutics Forward. Stem cells international, 2017. 2017: p. 5785436-5785436. 20. Yamamoto, S., et al., Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Scientific Reports, 2015. 5: p. 8505. 21. Ridker, P.M., C-reactive protein, inflammation, and cardiovascular disease: clinical update. Texas Heart Institute journal, 2005. 32(3): p. 384-386. 22. Badimon, L., et al., Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Frontiers in cardiovascular medicine, 2017. 4: p. 77-77. 23. Dignat-George, F. and M. Boulanger Chantal, The Many Faces of Endothelial Microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011. 31(1): p. 27-33. 24. Nozaki, T., et al., Significance of a Multiple Biomarkers Strategy Including Endothelial Dysfunction to Improve Risk Stratification for Cardiovascular Events in Patients at High Risk for Coronary Heart Disease. Journal of the American College of Cardiology, 2009. 54(7): p. 601. 25. Chen, J.-F., et al., Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(6): p. 2111-2116. 26. Ailawadi, S., et al., Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2015. 1852(1): p. 1-11. 27. Felekkis, K., et al., microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia, 2010. 14(4): p. 236-240. 28. Wahid, F., et al., MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2010. 1803(11): p. 1231-1243. 29. C. Lee, R., R. L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Vol. 75. 1994. 843-54. 30. Kozomara, A. and S. Griffiths-Jones, miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research, 2011. 39(Database issue): p. D152-D157. 31. Martens-Uzunova, E.S., M. Olvedy, and G. Jenster, Beyond microRNA – Novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Letters, 2013. 340(2): p. 201-211. 32. Catalanotto, C., C. Cogoni, and G. Zardo, MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. International Journal of Molecular Sciences, 2016. 17(10): p. 1712. 33. Cai, Y., et al., A brief review on the mechanisms of miRNA regulation. Genomics, proteomics & bioinformatics, 2009. 7(4): p. 147-154. 34. Ha, T.-Y., MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease. Immune network, 2011. 11(3): p. 135-154. 35. Gallo, A., et al., The Majority of MicroRNAs Detectable in Serum and Saliva Is Concentrated in Exosomes. PLOS ONE, 2012. 7(3): p. e30679. 36. Lv, L.-L., et al., Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery. International journal of biological sciences, 2013. 9(10): p. 1021-1031. 37. Zhou, Q., et al., Immune-related microRNAs are abundant in breast milk exosomes. International journal of biological sciences, 2011. 8(1): p. 118-123. 38. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(30): p. 10513-10518. 39. Tabet, F., et al., HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nature communications, 2014. 5: p. 3292-3292. 40. Turchinovich, A., et al., Characterization of extracellular circulating microRNA. Nucleic acids research, 2011. 39(16): p. 7223-7233. 41. Yu, X., M. Odenthal, and J.W.U. Fries, Exosomes as miRNA Carriers: Formation-Function-Future. International Journal of Molecular Sciences, 2016. 17(12): p. 2028. 42. Krill, K.T., et al., Dicer deficiency reveals microRNAs predicted to control gene expression in the developing adrenal cortex. Molecular endocrinology (Baltimore, Md.), 2013. 27(5): p. 754-768. 43. Small, E.M. and E.N. Olson, Pervasive roles of microRNAs in cardiovascular biology. Nature, 2011. 469(7330): p. 336-342. 44. Romaine, S.P.R., et al., MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart, 2015. 101(12): p. 921. 45. Jansen, F., et al., MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. Journal of the American Heart Association, 2014. 3(6): p. e001249-e001249. 46. Njock, M.-S. and J.E. Fish, Endothelial miRNAs as Cellular Messengers in Cardiometabolic Diseases. Trends in Endocrinology & Metabolism, 2017. 28(3): p. 237-246. 47. Jiang, Y., et al., Peripheral blood miRNAs as a biomarker for chronic cardiovascular diseases. Scientific Reports, 2014. 4: p. 5026. 48. Long, G., et al., Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. International journal of biological sciences, 2012. 8(6): p. 811-818. 49. Szatanek, R., et al., Isolation of extracellular vesicles: Determining the correct approach (Review). International journal of molecular medicine, 2015. 36(1): p. 11-17. 50. Clayton, A., et al., Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. Journal of Immunological Methods, 2001. 247(1): p. 163-174. 51. Cvjetkovic, A., J. Lötvall, and C. Lässer, The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. Journal of extracellular vesicles, 2014. 3: p. 10.3402/jev.v3.23111. 52. Li, P., et al., Progress in Exosome Isolation Techniques. Theranostics, 2017. 7(3): p. 789-804. 53. Konoshenko, M.Y., et al., Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BioMed research international, 2018. 2018: p. 8545347-8545347. 54. Kowal, J., et al., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(8): p. E968-E977. 55. Gholizadeh, S., et al., Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions. Biosensors & bioelectronics, 2017. 91: p. 588-605. 56. Théry, C., et al., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018. 7(1): p. 1535750. 57. Mourdikoudis, S., R.M. Pallares, and N.T.K. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018. 10(27): p. 12871-12934. 58. Stetefeld, J., S.A. McKenna, and T.R. Patel, Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical reviews, 2016. 8(4): p. 409-427. 59. Bachurski, D., et al., Extracellular vesicle measurements with nanoparticle tracking analysis - An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. Journal of extracellular vesicles, 2019. 8(1): p. 1596016-1596016. 60. Administrator, E.R. Nanoparticle Tracking Analysis (NTA) Measurements. 2015 6 July]; Available from: www.exosome-rna.com/nanoparticle-tracking-analysis-nta-measurements/. 61. Franken, L.E., E.J. Boekema, and M.C.A. Stuart, Transmission Electron Microscopy as a Tool for the Characterization of Soft Materials: Application and Interpretation. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2017. 4(5): p. 1600476-1600476. 62. Au - Jung, M.K. and J.Y. Au - Mun, Sample Preparation and Imaging of Exosomes by Transmission Electron Microscopy. JoVE, 2018(131): p. e56482. 63. Williams, D.B. and C.B. Carter, The transmission electron microscope, in Transmission electron microscopy. 1996, Springer. p. 3-17. 64. Kijanka, M., et al., A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy. Journal of Structural Biology, 2017. 199(1): p. 1-11. 65. Zabeo, D., et al., Exosomes purified from a single cell type have diverse morphology. Journal of extracellular vesicles, 2017. 6(1): p. 1329476-1329476. 66. Yuana, Y., et al., Cryo-electron microscopy of extracellular vesicles in fresh plasma. Journal of extracellular vesicles, 2013. 2: p. 10.3402/jev.v2i0.21494. 67. Tetta, C., et al., Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine, 2013. 44(1): p. 11-19. 68. Wiśniewski, J.R. and F.Z. Gaugaz, Fast and Sensitive Total Protein and Peptide Assays for Proteomic Analysis. Analytical Chemistry, 2015. 87(8): p. 4110-4116. 69. Pospichalova, V., et al., Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. Journal of extracellular vesicles, 2015. 4: p. 25530-25530. 70. Fujii, S., et al., MicroRNA in atherothromobosis: is it useful as a disease marker? Thrombosis journal, 2016. 14(Suppl 1): p. 21-21. 71. Gao, W., et al., Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids in health and disease, 2012. 11: p. 55-55. 72. Wang, J., et al., Altered serum microRNAs as novel diagnostic biomarkers for atypical coronary artery disease. PloS one, 2014. 9(9): p. e107012-e107012. 73. Novák, J., et al., MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediators of inflammation, 2014. 2014: p. 275867-275867. 74. Schulte, C., et al., miRNA-197 and miRNA-223 Predict Cardiovascular Death in a Cohort of Patients with Symptomatic Coronary Artery Disease. PLOS ONE, 2016. 10(12): p. e0145930. 75. Romaine, S.P.R., et al., MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart (British Cardiac Society), 2015. 101(12): p. 921-928. 76. Potus, F., et al., Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension. Circulation, 2015. 132(10): p. 932-943. 77. Wei, X.J., et al., Biological significance of miR-126 expression in atrial fibrillation and heart failure. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 2015. 48(11): p. 983-989. 78. Sun, X., et al., Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol. Thrombosis journal, 2012. 10(1): p. 16-16. 79. Han, H., et al., MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort. Experimental & molecular medicine, 2015. 47(2): p. e138-e138. 80. Sun, T., et al., The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. International Journal of Molecular Sciences, 2017. 18(4): p. 745. 81. Raitoharju, E., N. Oksala, and T. Lehtimäki, MicroRNAs in the Atherosclerotic Plaque. Clinical Chemistry, 2013. 59(12): p. 1708. 82. Rink, C. and S. Khanna, MicroRNA in ischemic stroke etiology and pathology. Physiological Genomics, 2010. 43(10): p. 521-528. 83. Feinberg Mark, W. and J. Moore Kathryn, MicroRNA Regulation of Atherosclerosis. Circulation Research, 2016. 118(4): p. 703-720. 84. Canfrán-Duque, A., et al., Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO molecular medicine, 2017. 9(9): p. 1244-1262. 85. Ali, S.S., et al., Pathological microRNAs in acute cardiovascular diseases and microRNA therapeutics. Journal of Acute Disease, 2016. 5(1): p. 9-15. 86. Duygu, B. and P.A. Da Costa Martins, miR-21: a star player in cardiac hypertrophy. Cardiovascular Research, 2015. 105(3): p. 235-237. 87. Wang, X., et al., Expression of miR-126 and its potential function in coronary artery disease. African health sciences, 2017. 17(2): p. 474-480. 88. Mocharla, P., et al., AngiomiR-126 expression and secretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood, 2013. 121(1): p. 226. 89. Zhu, Y., et al., Novel Biomarker MicroRNAs for Subtyping of Acute Coronary Syndrome: A Bioinformatics Approach. BioMed research international, 2016. 2016: p. 4618323-4618323. 90. Arunachalam, G., et al., MicroRNA Signature and Cardiovascular Dysfunction. 2015. 65(5): p. 419-429. 91. Sokolova, V., et al., Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids and Surfaces B: Biointerfaces, 2011. 87(1): p. 146-150. 92. He, M., et al., Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab on a chip, 2014. 14(19): p. 3773-3780. 93. Wu, X.-B., et al., Overexpression of microRNA-21 and microRNA-126 in the patients of bronchial asthma. International journal of clinical and experimental medicine, 2014. 7(5): p. 1307-1312. 94. Tan, W., et al., MicroRNAs and cancer: Key paradigms in molecular therapy. Oncology letters, 2018. 15(3): p. 2735-2742. 95. Soares Martins, T., et al., Exosome isolation from distinct biofluids using precipitation and column-based approaches. PloS one, 2018. 13(6): p. e0198820-e0198820. 96. Patel, G.K., et al., Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports, 2019. 9(1): p. 5335. 97. Webber, J. and A. Clayton, How pure are your vesicles? Journal of extracellular vesicles, 2013. 2: p. 10.3402/jev.v2i0.19861. 98. Scarff, C.A., et al., Variations on Negative Stain Electron Microscopy Methods: Tools for Tackling Challenging Systems. Journal of visualized experiments : JoVE, 2018(132): p. 57199. 99. Long, G., et al., Human Circulating MicroRNA-1 and MicroRNA-126 as Potential Novel Indicators for Acute Myocardial Infarction. Vol. 8. 2012. 811-8. 100. Li, P., et al., Progress in Exosome Isolation Techniques. Vol. 7. 2017. 789-804. 101. Cheng, H.-L., et al., Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system. Lab on a Chip, 2018. 18(19): p. 2917-2925.
|