|
1. Feynman, R.P., There's plenty of room at the bottom. Engineering and science, 1960. 23(5): p. 22-36. 2. Manz, A., N. Graber, and H.á. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, 1990. 1(1-6): p. 244-248. 3. Manz, A., et al., Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze? 1991, Elsevier. 4. Beebe, D.J., G.A. Mensing, and G.M. Walker, Physics and applications of microfluidics in biology. Annu Rev Biomed Eng, 2002. 4: p. 261-286. 5. Ichiki, T., et al. Development of bio-MEMS devices for single cell expression analysis. in Microprocesses and Nanotechnology Conference, 2001 International. 2001. 6. Zhan, Z., et al. Biochip for PCR amplification in silicon. in Microtechnologies in Medicine and Biology, 1st Annual International, Conference On. 2000. 2000. 7. CIA. Available from: https://www.reddit.com/r/MapPorn/comments/7pv5io/global_fertility_rates_in_2017_estimates_1356x628/. 8. Edwards, R., Towards single births after assisted reproduction treatment. Reprod Biomed Online, 2003. 7: p. 506-8. 9. Dickey, R., The relative contribution of assisted reproductive technologies and ovulation induction to multiple births in the United States 5 years after the Society for Assisted Reproductive Technology/American Society for Reproductive Medicine recommendation to limit the number of embryos transferred. Fertil Steril, 2007. 88: p. 1554-61. 10. Allen, V., R. Wilson, and A. Cheung, Pregnancy outcomes after assisted reproductive technology. J Obstet Gynaecol Can, 2006. 28: p. 220-50. 11. Setti, P., et al., Outcome of assisted reproductive technologies after different embryo transfer strategies. Reprod Biomed Online, 2005. 11: p. 64-70. 12. Patricia, K., N. Robert, and S. Jonathan, The economic impact of the assisted reproductive technologies. Nat Cell Biol, 2002: p. s29-32. 13. Henkel, R.R. and W.-B. Schill, Sperm preparation for ART. Reproductive Biology and Endocrinology, 2003. 1(108): p. 22. 14. Gordts, S., et al., Belgian legislation and the effect of elective single embryo transfer on IVF outcome. Reprod Biomed Online, 2005. 10: p. 436-41. 15. Pandian, Z., et al., Number of embryos for transfer following in-vitro fertilisation or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev, 2004. 18: p. CD003416. 16. Gebe. Available from: https://www.gebe.com/tup-bebek-tedavisi-sureci. 17. PraviIVF. Available from: http://praviivf.in/fertilitytreatment.aspx. 18. Zini, A., et al., Influence of semen processing technique on human sperm DNA integrity. Urology, 2000. 56(6): p. 1081-1084. 19. Jayaraman, V., et al., Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. Journal of assisted reproduction and genetics, 2012. 29(6): p. 557-563. 20. Chen, Y.-A., et al., Analysis of sperm concentration and motility in a microfluidic device. Microfluidics and Nanofluidics, 2010: p. 1-9. 21. Yamada, M., et al., Microfluidic devices for size-dependent separation of liver cells Biomedical Microdevices, 2007. 9(5): p. 637-645. 22. Lin, C.-H., et al., Novel continuous particle sorting in microfluidic chip utilizing cascaded squeeze effect. Microfluidics and nanofluidics, 2009. 7(4): p. 499. 23. McCormack, M.C., S. McCallum, and B. Behr, A novel microfluidic device for male subfertility screening. Journal of Urology, 2006. 175(6): p. 2223-2227. 24. Suh, R., S. Takayama, and G.D. Smith, Microfluidic Applications for Andrology. Journal of andrology, 2005. 26((6)): p. 664 - 670. 25. Warkiani, M.E., et al., Large-Volume Microfluidic Cell Sorting for Biomedical Applications. Annu Rev Biomed Eng, 2015. 17: p. 1-34. 26. Nosrati, R., et al., Rapid selection of sperm with high DNA integrity. Lab Chip, 2014. 14(6): p. 1142-50. 27. Zhang, B., T.L. Yin, and J. Yang, A novel microfluidic device for selecting human sperm to increase the proportion of morphologically normal, motile sperm with uncompromised DNA integrity. Analytical Methods, 2015. 7(14): p. 5981-5988. 28. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368. 29. Sackmann, E.K., A.L. Fulton, and D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature, 2014. 507(7491): p. 181. 30. Psaltis, D., S.R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. nature, 2006. 442(7101): p. 381. 31. Natali, I., Sperm Preparation Techniques for Artificial Insemination - Comparison of Sperm Washing, Swim Up, and Density Gradient Centrifugation Methods, in Artificial Insemination in Farm Animals, M. Manafi, Editor. 2011, InTech: Rijeka. p. Ch. 07. 32. Ricci, G., et al., Semen preparation methods and sperm apoptosis: swim-up versus gradient-density centrifugation technique. Fertility and sterility, 2009. 91(2): p. 632-638. 33. Jameel, T., Sperm swim-up: a simple and effective technique of semen processing for intrauterine insemination. J Pak Med Assoc, 2008. 58(2): p. 71-4. 34. Malvezzi, H., et al., Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reproductive Biology and Endocrinology, 2014. 12(1): p. 121. 35. Son, J., et al., Separation of sperm cells from samples containing high concentrations of white blood cells using a spiral channel. Biomicrofluidics, 2017. 11(5): p. 054106. 36. Nosrati, R., et al., Rapid selection of sperm with high DNA integrity. Lab on a Chip, 2014. 14(6): p. 1142-1150. 37. Valcarce, D., et al., Selection of nonapoptotic sperm by magnetic-activated cell sorting in Senegalese sole (Solea senegalensis). Theriogenology, 2016. 86(5): p. 1195-1202. 38. Matsuura, K., et al., Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device. Reprod Biomed Online, 2012. 24(1): p. 109-15. 39. Matsuura, K., et al., Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device. Reproductive biomedicine online, 2012. 24(1): p. 109-115. 40. Lin, Y.-N., et al. High-throughput sperm sorting in a micro diffuser type fluidic system. in Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on. 2013. IEEE. 41. Koyama, S., et al., Chemotaxis assays of mouse sperm on microfluidic devices. Analytical Chemistry, 2006. 78(10): p. 3354 -3359. 42. Lin, Y.N., et al. High-throughput sperm sorting in a micro diffuser type fluidic system. in Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on. 2013. 43. Chang-Yen, D.A., R.K. Eich, and B.K. Gale, A monolithic PDMS waveguide system fabricated using soft-lithography techniques. Lightwave Technology, Journal of, 2005. 23(6): p. 2088-2093. 44. Slentz, B.E., N.A. Penner, and F.E. Regnier, Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. Journal of Chromatography A, 2002. 948(1-2): p. 225-233. 45. Bauwens, J., C. Bauwens‐Crowet, and G. Homes, Tensile yield‐stress behavior of poly (vinyl chloride) and polycarbonate in the glass transition region. Journal of Polymer Science Part A‐2: Polymer Physics, 1969. 7(10): p. 1745-1754. 46. Chan, J.M., et al., Chemically modifiable N-heterocycle-functionalized polycarbonates as a platform for diverse smart biomimetic nanomaterials. Chemical Science, 2014. 5(8): p. 3294-3300. 47. Kanno, H., et al., Viability and function of human sperm in electrolyte-free cold preservation. Fertility and sterility, 1998. 69(1): p. 127-131. 48. Garner, D.L. and L.A. Johnson, Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biology of reproduction, 1995. 53(2): p. 276-284. 49. Chu SC, W.T., Li CC, Kao RH, Li DK, Su YC, Wells DA, Loken MR, Flow cytometric scoring system as a diagnostic and prognostic tool in myelodysplastic syndromes. Leuk Res, 2011. 35: p. 868-73. 50. Organization, W.H., WHO Laboratory Manual for the Examination and Processing of Human Semen. 2010: World Health Organization. 51. Lin, C.-H., C.-H. Chao, and C.-W. Lan, Low azeotropic solvent for bonding of PMMA microfluidic devices. Sensors and Actuators B: chemical, 2007. 121(2): p. 698-705. 52. Klank, H., J.P. Kutter, and O. Geschke, CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a Chip, 2002. 2(4): p. 242-246. 53. Tran, H.H., W. Wu, and N.Y. Lee, Ethanol and UV-assisted instantaneous bonding of PMMA assemblies and tuning in bonding reversibility. Sensors and Actuators B: Chemical, 2013. 181: p. 955-962. 54. Zhang, H., et al., Miscible organic solvents soak bonding method use in a PMMA multilayer microfluidic device. Micromachines, 2014. 5(4): p. 1416-1428. 55. Chen, P.-C. and L.H. Duong, Novel solvent bonding method for thermoplastic microfluidic chips. Sensors and Actuators B: Chemical, 2016. 237: p. 556-562. 56. Ferraz, M.A., et al., Designing 3-dimensional in vitro oviduct culture systems to study mammalian fertilization and embryo production. Annals of biomedical engineering, 2017. 45(7): p. 1731-1744. 57. Yanez, L.Z. and D.B. Camarillo, Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. MHR: Basic science of reproductive medicine, 2017. 23(4): p. 235-247. 58. Huang, H.-Y., Y.-L. Lai, and D.-J. Yao, Dielectrophoretic Microfluidic Device for in Vitro Fertilization. Micromachines, 2018. 9(3): p. 135.
|