帳號:guest(3.145.92.99)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳力鳳
作者(外文):Chen, Li-Feng
論文名稱(中文):利用微流道結合梯度凝膠電泳進行連續性自動化分選胞外體
論文名稱(外文):Development of Microfluidic Gradient Gel Electrophoresis for Continuous and Automated Isolation of Extracellular Vesicles
指導教授(中文):陳致真
指導教授(外文):Chen, Chih-Chen
口試委員(中文):許佳賢
游佳欣
口試委員(外文):Hsu, Chia-Hsien
Yu, Jia-Shing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:106035516
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:64
中文關鍵詞:胞外體凝膠微流體自動化電泳溫度梯度
外文關鍵詞:Extracellular VesicleGelMicrofluidicsAutomaticElectrophoresisTemperature gradient
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
胞外體(extracellular vesicles, EVs)是由細胞分泌到細胞外,能夠被受體細胞攝取的膜性囊泡小體。周圍由雙層磷脂質所包覆,直徑範圍可從30 nm到5,000 nm,且隨著分泌細胞的狀態,其分子組成也都不同。近年來越來越多研究指出胞外體可直接參與細胞間訊息的傳遞,其攜帶的核酸和蛋白質涉及影響受體細胞的生理狀態,並且與許多疾病的發生密切相關。然而,發展至今的技術尚未能有效率且自動化的分離胞外體和脂蛋白。目前主要有五類能從樣品中分離出胞外體的方法,即超高速差速離心法(differential ultracentrifugation)、超過濾法(ultrafiltration)、粒徑篩析層析法(size exclusion chromatography)、沉澱法(precipitation)、免疫親和法,其分別利用了胞外體的物理特性,如密度、大小以及表面抗原等生物特性,但這些方法往往面臨處理樣品耗時長、樣品處理通量低、純化程度不高、以及改變或損傷胞外體等問題,進而影響了後續研究發展及臨床應用。因此,本研究目標是開發出利用微流體裝置模組以分離胞外體,其可連續式獨立操作且可因應需求調整分離條件。在本研究當中,已成功利用溫度梯度製備出具有不同孔徑大小的凝膠,並建立不同粒徑螢光微珠的電泳實驗操作條件。相信此微流體裝置的建立能使往後的胞外體與脂蛋白研究更為精確且使用上更加便利。
Extracellular vesicles (EVs), secreted by cells to the outside of the cell and covered by bilayer phospholipids, have gradually been identified as one of the important mediators of cell communication. EVs have been explored as potential biomarkers for many diseases. However, the size of EVs is not only small but also widely distributed. The diameter of the EVs can range from 30 to 5,000 nm, and its molecular composition also varies depending on the type and the status of the secreting cell. In recent years, more and more studies have pointed out that EVs can directly participate in the transmission of cell-to-cell signals, and the cargo, including nucleic acids and proteins of EVs will affect the physiological state of the recipient cell and are closely related to many diseases. Currently, there are five main methods for the isolation of EVs from samples, including differential ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation, and immuno-affinity capture. These methods isolate EVs utilizing their physical biological characteristics, such as density, size, and surface antigens. But these methods are often faced with problems, such as the long processing time, low throughput, low purity, introducing modification or damages to EVs, all of which affect and limit the subsequent research and clinical applications as well. In addition, current technologies have not been able to efficiently and automatically isolate and separate EVs and lipoproteins due to their overlapped size and density. Hence, we aim to develop a microfluidic module to separate small-size EVs, which can be operated continuously and can be adjusted to achieve different separation conditions. We have successfully fabricated agarose gel of varying averaged pore size using temperature gradients. Polystyrene beads and EVs can be electrophoresed differentially based on their size and charges. It is believed that the establishment of this microfluidic device can facilitate the study of EVs and lipoproteins in the future.
摘要........................................I
Abstract....................................II
致謝.........................................IV
Table of Contents............................V
List of Figures..............................VIII
List of Tables...............................X
Chapter 1 緒論................................1
1.1 研究背景...................................1
1.2 胞外體 ( Extracellular vesicles, EVs ).....2
1.3分選胞外體的一般方法..........................3
1.4微流體技術 ( Microfluidics ).................4
1.5凝膠電泳 ( Gel electrophoresis ).............4
1.6梯度凝膠 ( Gradient gel )....................5
1.7凝膠種類.....................................6
1.8 脈衝場凝膠電泳 (pulsed-field gel electrophoresis,PFGE)........8
1.9 Continuous microfluidic assortment of interactive ligands (CMAIL)......................9
1.10 熱電致冷晶片(Thermoelectric cooler, TE cooler)...............9
1.11 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM).........11
1.12 研究動機與願景...............................................11
Chapter 2 實驗設計與方法..........................................12
2.1. 微流道晶片裝置............................................13
2.1.1 溫度控制模組建立............................................13
2.1.2 壓克力母模雛形設計製作.......................................14
2.1.3 壓克力母模微流道裝置.........................................16
2.1.4 溫度梯度瓊脂糖凝膠 (agarose gel) 製備及翻模...................17
2.2. 梯度凝膠孔徑拍攝.............................................18
2.2.1 凝膠於SEM拍攝前處理.........................................19
2.3. 螢光微珠凝膠電泳實驗..........................................20
2.3.1 螢光微珠樣品................................................20
2.3.2 凝膠電泳架設................................................20
2.3.3 雙向凝膠電泳架設............................................21
2.4 細胞培養與胞外體收集...........................................22
2.4.1 人類胚胎腎細胞(HEK 293T)培養步驟.............................22
2.4.2 HEK 293T胞外體收集.........................................23
2.4.3 以NTA分析HEK 293T..........................................23
2.5. 實驗結果分析工具與方法........................................24
2.5.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)........24
2.5.2 倒立光學顯微鏡 (DMIL LED, Leica, Major, Germany)............24
2.5.3 倒立式電控顯微鏡系統 (DMI6000 B, Leica, Major, Germany)......24
2.5.4 Image J 生物影像處理分析軟體.................................24
Chapter 3 實驗結果與討論..........................................25
3.1 初步測試溫度梯度凝膠電泳結果....................................25
3.1.1 傳統製膠盤溫度梯度凝膠製備...................................25
3.1.2 凝膠降溫速度分析............................................26
3.1.3 螢光微珠凝膠電泳結果.........................................26
3.2. 螢光微珠凝膠電泳結果..........................................27
3.2.1 FCDG001 (60 nm)螢光微珠凝膠電泳結果..........................27
3.2.2 F8797 (97nm)螢光微珠凝膠電泳結果.............................32
3.2.3 60 nm及97 nm螢光微珠混合液凝膠電泳結果........................38
3.3. 溫度控制模組之溫差結果........................................42
3.3.1 以IRT拍攝凝膠形成過程.......................................42
3.3.2 以thermocouple量測並分析其降溫速率...........................44
3.4. SEM拍攝凝膠孔徑結果..........................................45
3.5 螢光微珠梯度凝膠電泳結果.......................................49
3.6 螢光微珠進行連續性梯度凝膠電泳結果..............................51
3.7 HEK 293T胞外體進行連續性梯度凝膠電泳結果........................54
Chapter 4 結論...................................................58
Chapter 5 未來展望...............................................60
References......................................................61

1. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
2. Ruivo, C.F., et al., The Biology of Cancer Exosomes: Insights and New Perspectives. Cancer Res, 2017. 77(23): p. 6480-6488.
3. Whiteside, T.L., Tumor-Derived Exosomes and Their Role in Cancer Progression. Adv Clin Chem, 2016. 74: p. 103-41.
4. Li, W., et al., Role of exosomal proteins in cancer diagnosis. Mol Cancer, 2017. 16(1): p. 145.
5. Anderson, H.C., D. Mulhall, and R. Garimella, Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab Invest, 2010. 90(11): p. 1549-57.
6. Rouser, G., S. Fleischer, and A. Yamamoto, Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids, 1970. 5(5): p. 494-496.
7. Maas, S.L., J. De Vrij, and M.L. Broekman, Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. J Vis Exp, 2014(92): p. e51623.
8. Gyorgy, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci, 2011. 68(16): p. 2667-88.
9. Konoshenko, M.Y., et al., Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int, 2018. 2018: p. 8545347.
10. Gravesen, P., J. Branebjerg, and O.S. Jensen, Microfluidics-a review. Journal of Micromechanics and Microengineering, 1993. 3(4): p. 168.
11. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442: p. 368.
12. 莊榮輝. 電泳檢定法. 2000; Available from: http://juang.bst.ntu.edu.tw/ECX/Ana3.htm.
13. Gallik, S. Cell Biology OLM, the on-line laboratory manual for cell biology. 2011; Available from: http://stevegallik.org/cellbiologyolm_gelelectrophoresis.html.
14. BIO-RAD. PROTEAN Plus Multi-Casting Chamber. Available from: http://www.bio-rad.com/en-tw/product/protean-plus-multi-casting-chamber?ID=N3F39YCZF&WT.mc_id=yt-lsd-ww-proteanplusmulticastingchamber-20120501-RXhq6LKOtmc.
15. science., m. 密度梯度製膠器, MGM series. Available from: https://www.majorsci.com/webls-zh-tw/3-6-MGM.html.
16. Fawcett, J.S., D. Wheeler, and A. Chrambach, Transverse agarose pore gradient gel electrophoresis of DNA. Journal of Biochemical and Biophysical methods, 1992. 24(3-4): p. 181-194.
17. Bio., O. Gradient gel-EZ Gel Solution. Available from: http://www.omicsbio.com.tw/index.php?route=main/product&product_id=104.
18. National diagnostics., Casting Gradient Gels. 2011. Available from: https://www.nationaldiagnostics.com/electrophoresis/article/casting-gradient-gels
19. McMaster, G.K. and G.G. Carmichael, Analysis of single-and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proceedings of the National Academy of Sciences, 1977. 74(11): p. 4835-4838.
20. Maaloum, M., N. Pernodet, and B. Tinland, Agarose gel structure using atomic force microscopy: gel concentration and ionic strength effects. Electrophoresis, 1998. 19(10): p. 1606-1610.
21. Holmes, D.L. and N.C. Stellwagen, Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide. Electrophoresis, 1991. 12(9): p. 612-619.
22. Guiseley, K.B., Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme and Microbial Technology, 1989. 11(11): p. 706-716.
23. Sieminski, A., et al., The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochemistry and Biophysics, 2007. 49(2): p. 73-83.
24. Liang, R., J. Qiu, and P. Cai, A novel amperometric immunosensor based on three-dimensional sol–gel network and nanoparticle self-assemble technique. Analytica Chimica Acta, 2005. 534(2): p. 223-229.
25. Chen, C., et al., Precise control of agarose media pore structure by regulating cooling rate. J Sep Sci, 2017. 40(22): p. 4467-4474.
26. Ioannidis, N., et al., Manufacturing of agarose-based chromatographic adsorbents--effect of ionic strength and cooling conditions on particle structure and mechanical strength. J Colloid Interface Sci, 2012. 367(1): p. 153-60.
27. Holmes, D.L. and N.C. Stellwagen, The electric field dependence of DNA mobilities in agarose gels: A reinvestigation. Electrophoresis, 1990. 11(1): p. 5-15.
28. Olivera, B.M., P. Baine, and N. Davidson, Electrophoresis of the nucleic acids. Biopolymers, 1964. 2(3): p. 245-257.
29. Schwartz, D. C., & Cantor, C. R. (1984). Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell, 37(1), 67-75.
30. 曾福生, 余., and 林金榮. 淺談脈衝式凝膠電泳技術. 2009; Available from: http://www.tfrin.gov.tw/dl.asp?fileName=20091020-111445_14%E6%B7%BA%E8%AB%87%E8%84%88%E8%A1%9D%E5%BC%8F%E5%87%9D%E8%86%A0%E9%9B%BB%E6%B3%B3%E6%8A%80%E8%A1%93.pdf.
31. Hsiao, Y.H., et al., Continuous microfluidic assortment of interactive ligands (CMAIL). Sci Rep, 2016. 6: p. 32454.
32. Tritt, T.M. (2002) Thermoelectric Materials: Principles, Structure, Properties, and Applications. Encyclopedia of Materials: Science and Technology , 2nd Edition, 1-11.
33. 朱旭山/工研院材化所. 熱電致冷晶片之特性與應用. 2018; Available from: https://www.materialsnet.com.tw/DocView.aspx?id=32853.
34. 黃振東, 徐. 熱電材料. 《科學發展》 2013; 486期,48 ~ 53頁]. Available from: https://scitechvista.nat.gov.tw/c/s2p7.htm.
35. Waki, S., J.D. Harvey, and A.R. Bellamy, Study of agarose gels by electron microscopy of freeze-fractured surfaces. Biopolymers, 1982. 21(9): p. 1909-1926.
36. Attwood, T.K., B.J. Nelmes, and D.B. Sellen, Electron microscopy of beaded agarose gels. Biopolymers, 1988. 27(2): p. 201-212.
37. Arnott, S., et al., The agarose double helix and its function in agarose gel structure. Journal of Molecular Biology, 1974. 90(2): p. 269-284.
38. Chui, M.M., R.J. Phillips, and M.J. McCarthy, Measurement of the Porous Microstructure of Hydrogels by Nuclear Magnetic Resonance. Journal of Colloid and Interface Science, 1995. 174(2): p. 336-344.
39. Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., Michael, J.R., Scanning Electron Microscopy and X-ray Microanalysis - 2003 Third Edition. 2003.
40. Ji Z. Use of compositional and combinatorial nanomaterial libraries for biological studies. Science Bulletin. 2016;61(10):755–71.
41. 羅聖全. 研發奈米科技的基本工具之一 電子顯微鏡介紹 – SEM. Available from: http://www.materialsnet.com.tw/ad/adimages/aaaddd/mclm100/download/equipment/em/fe-sem/fe-sem005.pdf.
42. Johal, M. S. (2012). Understanding Nanomaterials. CRC Press.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *