帳號:guest(18.191.44.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):甘祐嘉
作者(外文):Kan, Yu-Chia
論文名稱(中文):SU-8乾膜結合被動式快速染色暨細胞自組裝排列晶片應用於循環腫瘤癌細胞之檢測
論文名稱(外文):The Combination of SU-8 Dry Film and Passive Dynamic Staining Self-Assembly Cell Array (PDS-SACA) Chip on Rapid Detection of Circulating Tumor Cells
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):饒達仁
呂隆昇
口試委員(外文):Yao, Da-Jeng
Lu, Long-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:106035515
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:透析染色細胞自組裝循環腫瘤癌細胞SU-8孔洞薄膜
外文關鍵詞:dialysis stainingcell self-assemblyCTCdetectionSU-8porous membrane
相關次數:
  • 推薦推薦:0
  • 點閱點閱:300
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
癌症已經連續多年佔據了國人的十大死因,癌症可怕的地方在於癌症轉移後的低治癒率,因此如何儘早發現並治癒癌症已成為很重要的課題。我們所研究的晶片便是為了快速檢測出轉移的癌症細胞,並對其進行藥物測試以協助醫生進行投藥。
轉移中的癌症會自原生腫瘤釋放出循環腫瘤癌細胞(Circulating Tumor Cells, CTCs)進入血液,在人體中進行循環並停留於特定部位。目前研究普遍認為,循環腫瘤癌細胞的數量與病人的病情預測以及存活率有正相關。因此,如何快速檢測出循環腫瘤癌細胞,在保留其活性的情況下用於後續培養、並用作藥物測試便是關鍵。目前應用於CTC檢測上最廣為人知的技術是唯一通過FDA 認證的CELLSEARCH®系統。然而,此系統檢測時間較為冗長,且離心會導致細胞的凋零,不利於後續培養,且在檢測過程中極易因細胞的堆疊從而導致計數上的誤判,因此目前這項系統已被該公司停售。
本實驗室過去的研究成果DS-SACA(Dynamic Staining Self-Assembly Cell Array) 晶片使用溫和的染色方式完成免疫螢光染色標定的程序,改善傳統方式中細胞因離心而導致操作上地流失;同時,在螢光顯微鏡的觀測下,能使細胞自組裝產生單層緊密的陣列。單一晶片便能保持細胞的活性、使影像易於判讀細胞形貌並可捕捉珍貴的CTC影像。
本研究旨在將本實驗室研究成果DS-SACA晶片進一步變成被動式流場驅動,並將主體材料替換,變為塑膠晶片,使其突破原本的材料限制,以大幅增加產量並降低成本,將製程繁雜的實驗晶片轉換為可用做商業化的晶片,把研究成果帶入醫療產業中。
The progression of cancer metastasis creates great difficulty in its treatment. Dissemination of cancer occurs by circulating tumor cells (CTC) shed in the vasculature. CTC is one of potential liquid biopsies which may be extremely useful in cancer diagnosis. Studies show the amount of CTC is correlated to overall survival and disease-free survives.
The CELLSEARCH® system is the only one which is FDA approved assay for CTC detection. It is applied in clinical use. However, it is lengthy along with inclusion of centrifugal force harmful for cell viability. In addition, cells stack up randomly which lead to the difficulty of counting the number of CTCs accurately.
A DS-SACA (Dynamic Staining Self-Assembly Cell Array) chip was designed for a gentler diagnostic procedure so as not to lose too many CTCs during the sample preparation process and keep the cells’ viability. Furthermore, the cells can form monolayer self-assembly after finishing immunofluorescence staining in order to avoid signal overlapped and to preserve the precious information of clinical morphology.
This study aims to reduce the complicated manufacturing process of DS-SACA by replacing the materials to plastics, which can break the limitation of original materials, leading to mass production and lower cost. By this way, we can bring our chip from laboratory to medical application.
目錄
第一章 緒論 12
1.1 研究背景 12
1.2 研究目標 16
第二章 文獻回顧 17
2.1 細胞篩選方法 17
2.1.1 CELLSEARCH®系統檢測循環腫瘤細胞 17
2.1.2 免疫標定(Immuno-labeling) 19
2.1.3 免疫磁球分離法(Immuno-magnetic separation) 21
2.1.4 免疫捕捉法(Immuno-capture) 22
2.1.5 免疫標定應用於臨床實驗 24
2.1.6 非免疫標定(Non-immunolabeling) 24
2.2 細胞自組裝陣列晶片(Self-Assemnly Cell Array Chip) 28
2.2.1 自組裝陣列晶片之平台設計及原理 28
2.2.2 平台製程及組裝 30
2.3 快速染色晶片3D-Dialysis chip 33
2.3.1 染色晶片結構設計 33
2.3.2 動態透析染色 33
2.4 快速免疫螢光染色暨細胞自組裝陣列之二合一晶片(Dynamic Staining Self-Assemnly Cell Array Chip,DS-SACA) 34
2.4.1 DS-SACA晶片結構設計 34
2.4.2 DS-SACA晶片工作原理 35
2.4.3 歷代DS-SACA晶片 36
2.5 接合 37
第三章 實驗設計 39
3.1實驗材料準備 39
3.1.1 細胞培養 39
3.1.2 器材使用 40
3.1.3 藥品介紹 41
3.2 晶片設計 45
3.3晶片工作原理 45
3.3.1 細胞自組裝排列 45
3.3.2 動態透析染色 46
3.4製程設計 47
3.4.1第四代DS-SACA晶片 47
3.4.2第五代DS-SACA晶片 48
3.4.3 DS-SACA晶片之SU8乾膜製程 48
3.5 全血檢測步驟設計 48
3.6 材料螢光測試 49
3.6.1 CBC材料螢光測試 50
3.6.2 PC材料螢光測試 50
3.7 材料接合測試 50
3.7.1 PC與SU-8接合測試 50
3.7.2 ViviOn™ (CBC)與SU-8接合測試 50
3.8 IRB癌症病患檢體測試 50
3.8.1 檢體分離及染色流程 51
3.8.2 循環腫瘤細胞CTC影像辨識 52
3.9晶片測試 53
3.9.1第四代DS-SACA晶片 53
3.9.2第五代DS-SACA晶片 54
3.9.3紅血球中細胞辨識度測試 54
第四章 結果與討論 56
4.1材料螢光測試 56
4.1.1 PC板材螢光測試 56
4.1.2 CBC板材螢光測試 58
4.2 材料接合測試 62
4.2.1 PC與SU-8接合測試 62
4.2.2 CBC與SU-8接合測試 62
4.3晶片測試 63
4.3.1 第四代DS-SACA晶片 63
4.3.2 第五代DS-SACA晶片 63
4.3.3 紅血球中細胞辨識度測試 65
第五章 結論 69
5.1 未來工作 69
第六章 參考文獻 71

[1] Tsung-Ju Chen, “High-efficiency rare cell identification on a high-density self-assembled cell arrangement chip,” Biomicrofluidics, 036501, 2014.
[2] C. A. Klein, “Parallel progression of primary tumours and metastases,” Nature Reviews Cancer, vol. 9, no. 4, pp. 302-312, 2009.
[3] C. L. Chaffer, and R. A. Weinberg, “A Perspective on Cancer Cell Metastasis,” Science, vol. 331, no. 6024, pp. 1559, 2011.
[4] T. A. Yap, D. Lorente, A. Omlin, D. Olmos, and J. S. de Bono, “Circulating Tumor Cells: A Multifunctional Biomarker,” Clinical Cancer Research, vol. 20, no. 10, pp. 2553, 2014.Timothy A., et al., Circulating Tumor Cells: A Multifunctional Biomarke., Clinical Cancer Research, 2014.5.
[5] Klaus Pantel1 and Catherine Alix-Panabieres, “ Circulating tumour cells in cancer patients: challenges and perspectives. Trends in Molecular Medicine, vol.16 No.9, 2010.
[6] John D. O’Flaherty, et al., “Circulating tumour cells, their role in metastasis and their clinical utility in lung cancer.” Elsevier, 2012.
[7] Krebs, M.G., et al.,“ Evaluation and prognostic significance of circulating tumor cells in patients with non–small-cell lung cancer.’’, Journal of Clinical Oncology, 29(12): p. 1556-1563, 2011.
[8] M. C. Miller, G. V. Doyle, and L. W. Terstappen, “Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer,” Journal of oncology, vol. 2010, 2009.
[9] R. Hoffman, and W. Britt, “Flow-system measurement of cell impedance properties,” Journal of Histochemistry & Cytochemistry, vol. 27, no. 1, pp. 234-240, 1979.
[10] W. Sheng, O. O. Ogunwobi, T. Chen, J. Zhang, T. J. George, C. Liu, and Z. H. Fan, “Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip,” Lab on a Chip, vol. 14, no. 1, pp. 89-98, 2014
[11] Shutao Wang. et al, Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers. Angew. Chem. Int. Ed. 2011, 50, 3084 –3088
[12] S. L. Stott, C.-H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. A. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, G. K. Korir, F. P. Floyd, A. J. Gilman, J. B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L. V. Sequist, R. J. Lee, K. J. Isselbacher, S. Maheswaran, D. A. Haber, and M. Toner, “Isolation of circulating tumor cells using a microvortex-generating herringbone-chip,” Proceedings of the National Academy of Sciences, vol. 107, no. 43, pp. 18392, 2010.
[13] D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Analytical and bioanalytical chemistry, vol. 397, no. 8, pp. 3249-3267, 2010.
[14] T. Huang, C.-P. Jia, Y. Jun, W.-J. Sun, W.-T. Wang, H.-L. Zhang, H. Cong, F.-X. Jing, H.-J. Mao, Q.-H. Jin, Z. Zhang, Y.-J. Chen, G. Li, G.-X. Mao, and J.-L. Zhao, “Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip,” Biosensors and Bioelectronics, vol. 51, pp. 213-218, 2014/01/15/, 2014.
[15] X. Fan, C. Jia, J. Yang, G. Li, H. Mao, Q. Jin, and J. Zhao, “A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells,” Biosensors and Bioelectronics, vol. 71, pp. 380-386, 2015/09/15/, 2015.
[16] M. Hosokawa, H. Kenmotsu, Y. Koh, T. Yoshino, T. Yoshikawa, T. Naito, T. Takahashi, H. Murakami, Y. Nakamura, A. Tsuya, T. Shukuya, A. Ono, H. Akamatsu, R. Watanabe, S. Ono, K. Mori, H. Kanbara, K. Yamaguchi, T. Tanaka, T. Matsunaga, and N. Yamamoto, “Size-Based Isolation of Circulating Tumor Cells in Lung Cancer Patients Using a Microcavity Array System,” PLOS ONE, vol. 8, no. 6, pp. e67466, 2013.
[17] Hou, Han Wei, Majid Ebrahimi Warkiani, Bee Luan Khoo, Zi Rui Li, Ross A. Soo, Daniel Shao-Weng Tan, Wan-Teck Lim, Jongyoon Han, Ali Asgar S. Bhagat, and Chwee Teck Lim. “Isolation and Retrieval of Circulating Tumor Cells Using Centrifugal Forces.” Sci. Rep. 3 , February 12, 2013.
[18] M. Yu, S. Stott, M. Toner, S. Maheswaran, and D. A. Haber, “Circulating tumor cells: approaches to isolation and characterization,” The Journal of Cell Biology, vol. 192, no. 3, pp. 373, 2011.
[19] M. Alunni-Fabbroni, and M. T. Sandri, “Circulating tumour cells in clinical practice: Methods of detection and possible characterization,” Methods, vol. 50, no. 4, pp. 289-297, 2010/04/01/, 2010..
[20] T.-J. Chen, J.-K. Wu, Y.-C. Chang, C.-Y. Fu, T.-P. Wang, C.-Y. Lin, H.-Y. Chang, C.-C. Chieng, c.-y. Tzeng, and F.-G. Tseng, “High-efficiency rare cell identification on a high-density self-assembled cell arrangement chip”, Biomicrofluidics, 8, 036501, 2014
[21] K.-H. Chen, H. Ying Chen, Y.-H. Weng, H. Yao Chu, F.-G. Tseng, C.-P. Lin, and J.-K. Jiang, ‘‘RAPID CIRCULATIING TUMOR CELLS STAINING IN THREE-DIMENSIONAL MICROWELL PERFUSION CHIP.’’, μTas Conference, 2016.
[22] W. Cho, R. Pradhan, H. Ying Chen, Y.-H. Weng, H. Yao Chu, F.-G. Tseng, C.-P. Lin, and J.-K. Jiang, ‘‘Rapid Staining of Circulating Tumor Cells in Three-Dimensional Microwell Dialysis (3D-μDialysis) Chip’’, Scientific Reports, 2017.
[23] Y. Ren, S.-H. Huang, S. Mosser, M. Heuschkel, A. Bertsch, P. Fraering, J.-J. Chen, and P. Renaud, “A Simple and Reliable PDMS and SU-8 Irreversible Bonding Method and Its Application on a Microfluidic-MEA Device for Neuroscience Research,” Micromachines, vol. 6, no. 12, pp. 1923–1934, Dec. 2015.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *