帳號:guest(3.149.250.17)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):安智豪
作者(外文):An, Chih-Hao
論文名稱(中文):熱阻式應變感測元件之效能分析
論文名稱(外文):Efficiency and Effectiveness Analyses on Thermoresistive Strain Sensors
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng-Yao
口試委員(中文):吳文中
萬德輝
口試委員(外文):Wu, Wen-Jong
Wan, Dehui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:106035510
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:110
中文關鍵詞:焦耳熱熱阻應變感測器噴墨印刷
外文關鍵詞:Joule heatingThermoresistiveStrain sensorInkjet Printing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究提出一種以焦耳熱定律為基礎之熱阻式應變感測技術,並且利用噴墨印刷技術進行感測元件製作,相較於傳統黃光製程,可大幅提升製程速度及彈性外,結合紅外線熱像儀也可達到小面積結構的形變破壞檢測及視覺化定位。運作原理建立於焦耳熱效應,於元件上施加固定電壓或電流,當形變發生時所產生的電阻值變化將導致熱能發生改變,並利用紅外線熱像儀量測溫度變化後反向推測出觀測範圍內的形變量。
實驗結果證實,不論張力或壓力皆可由此技術偵測微觀形變程度。另外,所提出的高分子覆蓋層有助於集中元件所產生之熱能,提升感測靈敏度。等溫線圖與應變及非應變方向溫差分析也說明了覆蓋層對於降低量測誤差之效果。由正反向摺痕應變分析,可清楚定位出應變實際發生位置,並將所得到的溫度值藉由計算分析,推算出區域內所受到之平均應變量。
A Joule heating-based thermoresistive strain sensor fabricated by inkjet printing process was realized in this study. Ink-jet printing process has more advantages including design flexibility and material saving compare to lithography. It also supports roll-to-roll system to realize high throughput manufacturing. With infrared imager, thermoresistive strain sensor is able to realize strain visualization and localization in small strain area, in which a traditional strain gauge does not support. The operation principle of strain sensor was based on Joule heating. When applying a fix electric energy, resistance difference caused by deformation will lead to thermal energy and temperature change. Strain condition in flexible substrate can thus be known by measuring the temperature with infrared detector. Analysis result shows that thermoresistive sensor supports both tension and compression.
A polymer concealing layer proposed in this work was fabricated and analyzed. With the concealing layer, heat energy in strain sensor accumulates and reduced energy loss reduces. Sensitivity was greatly enhanced compare to the strain sensor without a concealing layer. Temperature contour and tolerance measurement showed that influence from position and angle was reduced with the concealing layer, providing more accurate result. Tension and compression with a folding mark exhibited strain visualization and localization. In these demonstrations, high or low temperature in deformed area can be clearly observed.
摘要............................................I
Abstract.........................................II
致謝.............................................IV
目錄..............................................V
圖目錄............................................IX
表目錄............................................XIV
符號表............................................XV
第一章 緒論....................................1
1.1 前言.......................................1
1.2 表面形貌檢測..............................2
1.3 熱阻式感測技術...........................2
1.4 軟性電子與噴墨印刷......................3
1.4.1 噴墨印刷技術簡介.......................4
1.4.2 噴墨印刷應用於軟性電子之優勢......6
1.5 研究動機....................................7
1.6 文獻回顧....................................9
1.6.1 應變量測..................................9
1.6.2 表面輪廓分析應用.......................10
第二章 理論與設計.............................25
2.1 元件感測機制...............................25
2.1.1 力學應變理論.............................25
2.1.2 焦耳熱效應................................26
2.2 保溫層覆蓋機制.............................28
2.3 紅外線測溫原理.............................29
2.4 元件設計.....................................30
2.5 模擬分析.....................................31
2.6 應變分布檢測................................32
2.6.1 摺痕應變....................................32
2.6.2 正、反向應變串聯分析...................32
第三章 實驗製程.................................44
3.1 實驗流程......................................44
3.2 噴墨印刷製程................................45
3.2.1 噴印系統....................................45
3.2.2 噴印參數分析...............................45
3.3 固化與燒結....................................47
3.4 元件性質分析.................................48
3.4.1 結構分析.....................................48
3.4.2 材料性質分析................................48
3.5 量測系統架構..................................49
3.5.1 應變機制......................................49
3.5.2 電源供應......................................50
3.5.3 溫度量測......................................50
第四章 研究結果與討論...........................67
4.1 應變量測分析...................................67
4.1.1 正向應變(張力) ..............................67
4.1.2 負向應變(壓力) ..............................67
4.1 感測靈敏度......................................68
4.2 應變係數.........................................69
4.3 表面溫度分布....................................70
4.3.1 熱能輻射機制..................................70
4.3.2 表面等溫線分析...............................71
4.4 不規則應變分析.................................73
4.4.1 正向摺痕.......................................73
4.4.2 反向摺痕.......................................77
第五章 結論與未來工作............................104
5.1 結論...............................................104
5.2 未來展望.........................................105
參考文獻..................................................108

[1] R. E. Wijesinghe, K. Park, Y. Jung, P. Kim, M. Jeon, and J. Kim, "Industrial resin inspection for display production using automated fluid-inspection based on multimodal optical detection techniques" Optics and Lasers in Engineering, vol. 96, pp. 75-82, 2017.
[2] Y. Ye, K. Ma, H. Zhou, D. Arola, and D. Zhang, "An Automated Shearography System for Cylindrical Surface Inspection, " Measurement, 2018.
[3] E. Lucchi, "Applications of the infrared thermography in the energy audit of buildings: A review" Renewable and Sustainable Energy Reviews, 2017.
[4] Y. Kim, Y. Kim, C. Lee, and S. Kwon, "Thin polysilicon gauge for strain measurement of structural elements" IEEE Sensors Journal, vol. 10, no. 8, pp. 1320-1327, 2010.
[5] Q. Xia and F. Quail, "Principles and validation of strain gauge shunt design for large dynamic strain measurement" Sensors and Actuators A: Physical, vol. 241, pp. 124-134, 2016.
[6] A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, "The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators" Sensors and Actuators A: Physical, vol. 158, no. 1, pp. 149-160, 2010.
[7] A. Nathan and B. R. Chalamala, "Special issue on flexible electronics technology, Part 1: Systems and applications" Proceedings of the IEEE, vol. 93, no. 7, pp. 1235-1238, 2005.
[8] A. Nathan and B. Chalamala, "Special issue on flexible electronics technology, Part II: Materials and devices" Proceedings of the IEEE, vol. 93, no. 8, pp. 1391-1393, 2005.
[9] A. Pimpin and W. Srituravanich, "Review on micro-and nanolithography techniques and their applications" Engineering Journal, vol. 16, no. 1, pp. 37-56, 2012.
[10] A. Nathan et al., "Flexible electronics: the next ubiquitous platform" Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1486-1517, 2012.
[11] T. Mustonen, "Inkjet printing of carbon nanotubes for electronic applications" Diss. Universität von Oulu, Finnland, 2009.
[12] B. J. De Gans, P. C. Duineveld, and U. S. Schubert, "Inkjet printing of polymers: state of the art and future developments" Advanced materials, vol. 16, no. 3, pp. 203-213, 2004.
[13] J. Li, F. Rossignol, and J. Macdonald, "Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing" Lab on a Chip, vol. 15, no. 12, pp. 2538-2558, 2015.
[14] H. Sadeghian, Y. Hojjat, M. Ghodsi, and M. R. Sheykholeslami, "An approach to design and fabrication of a piezo-actuated microdroplet generator" The International Journal of Advanced Manufacturing Technology, vol. 70, no. 5-8, pp. 1091-1099, 2014.
[15] J.-C. Liou, "Precisely Addressed (DNA Gene) Spray Microfluidic Chip Technology" Microfluidics and Nanofluidics, p. 201, 2018.
[16] https://www.nitto.com/tw/en/rd/base/paint/carry/
[17] J. Greener, G. Pearson, and M. Cakmak, Roll-to-roll Manufacturing: Process Elements and Recent Advances, 2018.
[18] Y. Wu et al., "Strain effects on the work function of an organic semiconductor" Nature communications, vol. 7, p. 10270, 2016.
[19] http://www.chiefsi.com.tw/pro.php?link_id=29
[20] K.-H. Liao and C.-Y. Lo, "Thermoresistive strain sensor and positioning method for roll-to-roll processes" Sensors, vol. 14, no. 5, pp. 8082-8095, 2014.
[21] K.-H. Liao, C.-H. An, and C.-Y. Lo, "Continuous inkjet-patterned and flashlight-sintered strain sensor for in-line off-axis detection in Roll-to-Roll manufacturing" Mechatronics, vol. 59, pp. 95-103, 2019.
[22] O. J. Gregory, X. Chen, and E. E. Crisman, "Strain and temperature effects in indium–tin-oxide sensors" Thin Solid Films, vol. 518, no. 19, pp. 5622-5625, 2010.
[23] L.-J. Wei and C. H. Oxley, "Carbon based resistive strain gauge sensor fabricated on titanium using micro-dispensing direct write technology" Sensors and Actuators A: Physical, vol. 247, pp. 389-392, 2016.
[24] U. P. Kumar, W. Haifeng, N. K. Mohan, and M. Kothiyal, "White light interferometry for surface profiling with a colour CCD" Optics and Lasers in Engineering, vol. 50, no. 8, pp. 1084-1088, 2012.
[25] F. Dimatix, "Materials Printer & Cartridge DMP-2800 Series Printer & DMC-11600 Series Cartridge FAQ" 2008.
[26] H. Wijshoff, "Drop dynamics in the inkjet printing process" Current opinion in colloid & interface science, vol. 36, pp. 20-27, 2018.
[27] http://www.avio.co.jp/english/
[28] G. Langer, J. Hartmann, and M. Reichling, "Thermal conductivity of thin metallic films measured by photothermal profile analysis" Review of Scientific Instruments, vol. 68, no. 3, pp. 1510-1513, 1997.
[29] G. Schoukens, P. Samyn, S. Maddens, and T. Van Audenaerde, "Shrinkage behavior after the heat setting of biaxially stretched poly (ethylene 2, 6‐naphthalate) films and bottles" Journal of applied polymer science, vol. 87, no. 9, pp. 1462-1473, 2003
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *