帳號:guest(3.142.199.22)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姚明鏡
作者(外文):Yao, Ming-Jing
論文名稱(中文):考量車道反轉之疏散規劃問題
論文名稱(外文):Evacuation Planning Using Contraflow Reconfiguration
指導教授(中文):林東盈
指導教授(外文):Lin, Dung-Ying
口試委員(中文):王逸琳
沈宗緯
口試委員(外文):Wang, I-Lin
Shen, Tsung-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034753
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:車道反轉疏散規劃動態網絡流
外文關鍵詞:contraflowlane reversalevacuation planningtime expanded graphdynamic network flow
相關次數:
  • 推薦推薦:0
  • 點閱點閱:291
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
為了應變災害而做的疏散規劃在國際上早已被廣泛研究。在歷年的研究與實際執行中,車道反轉是有效提升道路流量以達成道路疏通的常見方法。開發演算法來規劃有車道反轉的疏散路徑不僅能更佳地解決車道反轉配置的問題,也可以幫助量化網路的疏散時間。本研究使用流量理論,在給定的單一來源及單一目的疏散情況下使用具有方向以及容量的流量圖來簡化路網,並將實際路網上的參數建立數學模型。以最小化疏散時間為目標,建立一個以車道反轉來增加疏散流量的網路流演算法。研究提出一種最大動態車道反轉流量演算法 (Modified Maximum Dynamic Contraflow, Modified-MDCF),該演算法以旅行時間限制來尋找疏散路徑,並同時考量旅行時間以及道路容量兩者,優先採納疏散時間最少的路徑,使得疏散所需之路徑數減少。演算法並在大規模的疏散規劃問題中求得與商用最佳化軟體相同或非常接近的最小疏散時間解,並大幅降低計算時間。
Evacuation Planning is widely studied as a precaution of natural hazards. In the past research and actual implementation, contraflow (or lane reversal) is an effective way to increase the outbound road capacity by reversing the direction of inbound roads during evacuations. Developing an algorithm for evacuation path planning with contraflow can not only obtain better network configuration for evacuation but also quantify the evacuation time of the network.
This study applies graph and flow theory to simplify the road network by using a directed graph and arc with capacity and travel time. Given a single source and a single destination, this study establishes a mathematical model to formulate the actual road network evacuation planning problem using contraflow. To minimize the total evacuation time, a network flow algorithm called Modified Maximum Dynamic Contraflow (Modified-MDCF) is established. The algorithm considers both travel time and road capacity during its search and evaluation of evacuation paths. It tends to adopt the path which evacuates the demand with minimum evacuation time, thus reducing the number of paths required for evacuation. Modified-MDCF obtained the minimum evacuation time that is the same as or very close to the solution of commercial optimization software in the numerical experiments. It also reduces the computation time dramatically in the large-scale evacuation problem, compared to the optimization software.
摘要
目錄
表目錄
圖目錄
第1章 緒論 1
1.1研究背景 1
1.2研究目的 1
1.3研究流程 2
第2章 文獻回顧 4
2.1網絡流量模型 5
2.1.1 靜態流量模型 5
2.1.2 動態流量模型 5
2.1.3 車道反轉流量模型 6
2.2車道反轉 7
2.3小結 8
第3章 數學模型 9
3.1名詞定義 9
3.2模型假設 11
3.3問題敘述 11
3.4數學模型 14
第4章 Modified Maximum Dynamic Contraflow Algorithm 20
4.1 演算法求解流程與比較 20
4.2 求解流程範例 33
4.3小結 37
第5章 數值分析 38
5.1參數設定 38
5.2模型驗證 41
5.3預期疏散時間上限之敏感度分析 54
5.4小結 59
第6章 結論及未來研究 60
第7章 參考文獻 61

Dhamala, T. N., Pyakurel, U., & Dempe, S. (2018). A critical survey on the network optimization algorithms for evacuation planning problems. International Journal of Operations Research, 15(3), 101–133. https://doi.org/10.6886/IJOR.201809_15(3).0002

Aronson, J. E. (1989). A survey of dynamic network flows. Annals of Operations Research, 20(1), 1–66. https://doi.org/10.1007/bf02216922

Dhamala, T. N. (2015). A survey on models and algorithms for discrete evacuation planning network problems. Journal of Industrial & Management Optimization, 11(1), 265–289. https://doi.org/10.3934/jimo.2015.11.265

MacDorman, L. C. (1965). Case study in sensitivity of highway economy factors. Highway Research Record, 100, 2–19. TRID (Accession Number: 00201124)

Glickman, T. S. (1971). Optimal periodic control of reversible traffic operations. (Doctoral dissertation, Johns Hopkins University, Baltimore). TRID (Accession Number: 00226607)

Hemphill, J., & Surti, V. H. (1974). A Feasibility Study of a Reversible-Lane Facility for a Denver Street Corridor (Abridgment). Transportation Research Record, 514, 29–32. TRID. http://onlinepubs.trb.org/Onlinepubs/trr/1974/514/514-003.pdf

Ford, L. R., & Fulkerson, D. R. (1958). Constructing Maximal Dynamic Flows from Static Flows. Operations Research, 6(3), 419–433. https://doi.org/10.1287/opre.6.3.419

Ford, L. R., Fulkerson, D. R., Bland, R. G., & Orlin, J. B. (1962). Flows in Networks (Princeton Landmarks in Mathematics and Physics) (Revised ed.). Princeton University Press.

Caudill, R. J., & Kuo, N. M. (1983). Development of an interactive planning model for contraflow lane evaluation. Transportation Research Record, 906, 47–54. TRID. http://onlinepubs.trb.org/Onlinepubs/trr/1983/906/906-007.pdf

Urmila Pyakurel (2016). Evacuation planning problem with contraflow approach. (Doctoral dissertation, Tribhuvan University, Nepal). ResearchGate. https://www.researchgate.net/publication/318636903

Kim, S., & Shekhar, S. (2005). Contraflow network reconfiguration for evacuation planning: a summary of results. Proceedings of 13th ACM Symposium on Advances in Geographic Information Systems (GIS 05), 250–259.

Kim, S., & Shekhar, S. (2006). Contraflow Transportation Network Reconfiguration for Evacuation Route Planning. (Report No. MN/RC-2006-21). Department of Transportation, University of Minnesota. http://www.lrrb.org/PDF/200621.pdf

Kim, S., Shekhar, S., & Min, M. (2008). Contraflow Transportation Network Reconfiguration for Evacuation Route Planning. IEEE Transactions on Knowledge and Data Engineering, 20(8), 1115–1129. https://doi.org/10.1109/tkde.2007.190722

Wang, J. W., Ip, W. H., & Zhang, W. J. (2010). An Integrated Road Construction and Resource Planning Approach to the Evacuation of Victims From Single Source to Multiple Destinations. IEEE Transactions on Intelligent Transportation Systems, 11(2), 277–289. https://doi.org/10.1109/tits.2010.2040276

Afandizadeh, S., Jahangiri, A., Kalantari, N. (2009). Determination of the optimal network configuration for emergency evacuation by simulated annealing algorithm. Proceeding of the 2nd WSEAS International Conference on Natural Hazards, 65–71. http://www.wseas.us/elibrary/conferences/2009/baltimore/URNACG/URNACG-10.pdf

Rebennack, S., Arulselvan, A., Elefteriadou, L., & Pardalos, P. M. (2010). Complexity analysis for maximum flow problems with arc reversals. Journal of Combinatorial Optimization, 19(2), 200–216. https://doi.org/10.1007/s10878-008-9175-8

Hoppe, B., & Tardos, E. (1994). Polynomial time algorithms for some evacuation problems. Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, 433–441.

Hamacher, H. W. (1983). Min cost and time minimizing dynamic flows. (Research Report No. 83-16). Industrial and Systems Engineering Department, University of Florida, Gainesville.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271. https://doi.org/10.1007/bf01386390

Bein, W. W., Brucker, P., & Tamir, A. (1985). Minimum cost flow algorithms for series-parallel networks. Discrete Applied Mathematics, 10(2), 117–124. https://doi.org/10.1016/0166-218x(85)90006-x

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications (1st ed.) (pp. 26-28). Pearson.

Goldberg, A. V., & Tarjan, R. E. (1989). Finding minimum-cost circulations by canceling negative cycles. Journal of the ACM (JACM), 36(4), 873–886. https://doi.org/10.1145/76359.76368

Pardalos, P. M., & Arulselvan, A. (2009). Multimodal solutions for large scale evacuations (No. 2008-005). University of Florida. Center for Multimodal Solutions for Congestion Mitigation. https://rosap.ntl.bts.gov/view/dot/24709

Burkard, R. E., Dlaska, K., & Klinz, B. (1993). The quickest flow problem. ZOR-Methods and Models of Operations Research Methods and Models of Operations Research, 37(1), 31–58. https://doi.org/10.1007/bf01415527

林豐博、曾平毅、林國顯、蘇振維、張瓊文、鄭嘉盈、呂怡青、劉國慶、陳昭堯、王怡方(民100)。2011年臺灣公路容量手冊(編號:MOTC-IOT-100-PBA039)。臺北市:交通部運輸研究所。

何明錦、蕭江碧(民88)。都市空間大量人員避難行為模式之建構。新北市:內政部建築研究所。

嘉義市政府(民108)。嘉義市108年度水災危險潛勢地區保全計畫。未出版。

嘉義市政府(民109)。嘉義市109年度水災危險潛勢地區保全計畫。未出版。

嘉義市政府。區里戶數及人口數統計。嘉義市戶政服務網。https://household.chiayi.gov.tw/
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *