帳號:guest(18.118.19.189)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭惇勻
作者(外文):Cheng, Tun-Yun
論文名稱(中文):壽命績效指標於伽瑪與韋伯分配下區間估計方法比較之研究
論文名稱(外文):A Comparative Study on Interval Estimation Methods of the Lifetime Performance Index Under Gamma and Weibull Distributions
指導教授(中文):吳建瑋
指導教授(外文):Wu, Chien-Wei
口試委員(中文):蘇明鴻
王姿惠
口試委員(外文):Shu, Ming-Hung
Wang, Zih-Huei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034608
出版年(民國):109
畢業學年度:107
語文別:中文
論文頁數:139
中文關鍵詞:壽命績效指標貝氏方法馬可夫鏈蒙地卡羅複式抽樣法涵蓋率
外文關鍵詞:Lifetime performance indexBayesian approachMarkov Chain Monte CarloBootstrap resampling methodCoverage rate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:530
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著電子產品的消費市場蓬勃發展,人們越加重視產品品質的好壞,而壽命特性常被用來評估電子產品的品質,壽命越長代表品質越好。為了有效衡量品質,製程能力指標為常用的方式,然而許多傳統型的製程能力指標皆須假設其品質特性服從常態分配,但實務上,有些品質特性未必服從常態分配,例如:壽命,若應用傳統製程能力指標來評估壽命績效會造成錯誤的估計,因而壽命績效指標 被提出並建議用來衡量產品壽命的績效表現。
本研究將針對產品壽命服從伽瑪分配與韋伯分配下,以壽命績效指標 為基礎,發展區間估計的方式來進行壽命績效評估,文獻上,當壽命服從伽瑪或韋伯分配,若其形狀參數為已知,已有其估計式抽樣分配之確切形式,可進行區間估計,然而兩分配之參數大多皆為未知的,不易利用傳統抽樣分配法(frequency distribution method)建構精確的信賴區間,因此本研究以貝氏方法結合馬可夫鏈蒙地卡羅(Markov Chain Monte Carlo, MCMC)求得壽命績效指標的可信區間(credible interval),並將此與過去常見無母數估計的複式抽樣法(Bootstrap resampling method)所建構的信賴區間進行比較與探討,利用涵蓋率(coverage rate)與平均區間寬度(average interval width)等方式評估不同方法建構出的區間表現,模擬結果顯示本研究所發展的馬可夫鏈蒙地卡羅法皆有不錯的表現。此外我們透過兩個應用案例說明產品壽命績效評估之流程,並同時建構一個圖形化使用者介面,藉此協助決策者更容易、更方便應用本研究所發展的方法進行壽命績效評估。
As the consumer market for electronic products flourishes, people pay more attention to the quality of products. And, lifetime is often used to evaluate the quality of electronic products. The longer the lifetime, the better the quality. In order to effectively measure quality, process capability indices (PCIs) are commonly considered to be useful tools. Many traditional PCIs should be applied under the assumption that the quality characteristics are normally distributed. However, in practice, some quality characteristics may not generally possess normal distribution, such as the lifetime of electronic products. A lifetime performance index was therefore proposed and recommended to measure the performance of lifetime.
Based on the lifetime performance index, this study provides procedures for lifetime performance assessment under gamma and Weibull distributions. We can obtain more reliable estimates by interval estimation. When the lifetime follows two distributions and their shape parameters are known, there have exact forms of the sampling distribution of the estimator of respectively so that we can perform interval estimation. However, the parameters of two distributions actually are often unknown and it is not easy to construct an accurate confidence interval using the traditional frequency distribution method. So, in our study we integrate the Markov chain Monte Carlo (MCMC) technique into Bayesian approach to construct credible intervals for . Then, we compare them with the bootstrap confidence intervals in terms of the coverage rates and the average interval widths. The simulation results show that MCMC proposed in our study perform better than bootstrap resampling methods. In addition, we also provide two application cases with a graphical user interface to easily illustrate the procedure of lifetime performance assessment.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究架構 3
第二章 文獻回顧與探討 6
2.1 製程能力指標 6
2.2 壽命績效指標 11
2.3 基於伽瑪分配下之壽命績效指標 13
2.3.1 伽瑪分配與參數估計 13
2.3.2 壽命績效指標與產品壽命合格率 17
2.3.3 壽命績效指標之估計式與信賴區間 18
2.4 基於韋伯分配下之壽命績效指標 20
2.4.1 韋伯分配與參數估計 20
2.4.2 壽命績效指標與產品壽命合格率 24
2.4.3 壽命績效指標之估計式與信賴區間 25
2.5 區間估計方法 28
2.5.1 複式抽樣法 29
2.5.2 貝氏方法 32
2.5.3 馬可夫鏈蒙地卡羅法 33
第三章 基於伽瑪分配下區間估計方法之分析與探討 46
3.1 貝氏區間估計 46
3.1.1 伽瑪分配參數之事後機率分配 46
3.1.2 以馬可夫鏈蒙地卡羅法建構可信區間 50
3.2 形狀參數已知情況下之區間估計 51
3.2.1 模擬環境設定與流程 51
3.2.2 模擬結果分析 54
3.3 雙參數皆未知情況下之區間估計 59
3.3.1 模擬環境設定與流程 59
3.3.2 模擬結果分析 62
第四章 基於韋伯分配下區間估計方法之分析與探討 69
4.1 貝氏區間估計 69
4.1.1 韋伯分配參數之事後機率分配 69
4.2 形狀參數已知情況下之區間估計 72
4.2.1 模擬環境設定與流程 72
4.2.2 模擬結果分析 75
4.3 雙參數皆未知情況下之區間估計 81
4.3.1 模擬環境設定與流程 81
4.3.2 模擬結果分析 84
第五章 圖形化使用者介面與案例分析 93
5.1 圖形化使用者介面操作與說明 93
5.2 案例分析 102
5.2.1 LED燈泡案例 102
5.2.2 TFT-LCD顯示器案例 109
第六章 結論與未來研究方向 117
6.1 結論 117
6.2 未來研究方向 118
參考文獻 120
附錄A 126
附錄B 132

一、 中文文獻
1. 李端 (2016)。建構產品壽命服從韋伯分配之壽命檢定計畫,國立清華大學工業工程與工程管理學系碩士論文,未出版,新竹市。
2. 劉丞軒 (2016)。基於伽瑪分配之壽命績效指標發展重覆遞交與群集驗收抽樣計畫,國立清華大學工業工程與工程管理學系碩士論文,未出版,新竹市。
3. 黃亭穎 (2018)。基於良率指標發展製程良率評估程序之研究,國立清華大學工業工程與工程管理學系碩士論文,未出版,新竹市。
二、 英文文獻
1. Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., & Cochran, J. J. (1990). Statistics for business & economics. Saint Paul, MN: West Publishing Company.
2. Balamurali, S., & Kalyanasundaram, M. (2002). Bootstrap lower confidence limits for the process capability indices Cp, Cpk and Cpm. International Journal of Quality & Reliability Management, 19(8/9), 1088-1097.
3. Bernardo, J. M., & Smith, A. F. (1993). Bayesian theory: John Wiley & Sons.
4. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243.
5. Box, G. E., & Tiao, G. C. (2011). Bayesian inference in statistical analysis (Vol. 40): John Wiley & Sons.
6. Boyles, R. A. (1991). The Taguchi capability index. Journal of quality technology, 23(1), 17-26.
7. Boyles, R. A. (1994). Brocess capability with asymmetric tolerances. Communications in Statistics-Simulation and Computation, 23(3), 615-635.
8. Buckland, W. R. (1964). Statistical assessment of the life characteristic: a bibliographic guide (Vol. 13): Hafner.
9. Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46(3), 167-174.
10. Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability: Cpm. Journal of quality technology, 20(3), 162-175.
11. Cheng, S. W., & Spiring, F. A. (1989). Assessing process capability: a Bayesian approach. IIE transactions, 21(1), 97-98.
12. Clements, J. A. (1989). Process capability calculations, for non-normal distributions. Quality Progress, 22, 95-100.
13. Cohen, A. C. (1965). Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics, 7(4), 579-588.
14. Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91(434), 883-904.
15. Cox, D. R. (1962). Renewal Theory, Methuen and Co. Ltd.
16. Devroye, L. (1986). Non-uniform Random Variate Generation.
17. Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. the Annals of Statistics, 7(1), 1-26.
18. Efron, B. (1981). Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika, 68(3), 589-599.
19. Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. Society for industrial and applied mathematics.
20. Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171-185.
21. Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37(1), 36-48.
22. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54-75.
23. Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap: CRC press.
24. English, J. R., & Taylor, G. D. (1993). Process capability analysis—a robustness study. The international journal of production research, 31(7), 1621-1635.
25. Epstein, B., & Sobel, M. (1953). Life testing. Journal of the American Statistical Association, 48(263), 486-502.
26. Farrell, S., & Ludwig, C. J. (2008). Bayesian and maximum likelihood estimation of hierarchical response time models. Psychonomic bulletin & review, 15(6), 1209-1217.
27. Franklin, L. A., & Wasserman, G. (1991). Bootstrap confidence interval estimates of Cpk: an introduction. Communications in Statistics-Simulation and Computation, 20(1), 231-242.
28. Franklin, L. A., & Wasserman, G. S. (1992). Bootstrap lower confidence limits for capability indices. Journal of quality technology, 24(4), 196-210.
29. Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409.
30. Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
31. Geyer, C. J. (1992). Practical markov chain monte carlo. Statistical science, 473-483.
32. Gilks, W. R. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. Bayesian statistics, 4(2), 641-649.
33. Gilks, W. R. (2005). Markov Chain Monte Carlo. Encyclopedia of Biostatistics, 4.
34. Gilks, W. R., Best, N. G., & Tan, K. K. C. (1995a). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 455-472.
35. Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995b). Markov chain Monte Carlo in practice: Chapman and Hall/CRC.
36. Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41(2), 337-348.
37. Green, E. J., Roesch Jr, F. A., Smith, A. F., & Strawderman, W. E. (1994). Bayesian estimation for the three-parameter Weibull distribution with tree diameter data. Biometrics, 254-269.
38. Gunter, B. H. (1989). The use and abuse of Cpk. Quality Progress, 22(1), 72-73.
39. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109.
40. Jeffreys, H. (1998). The theory of probability: OUP Oxford.
41. Juran, J. M., Gryna, F. M., & Bingham, R. S. (1974). Quality control handbook: McGraw-Hill New York.
42. Kane, V. E. (1986). Process capability indices. Journal of quality technology, 18(1), 41-52.
43. Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343-1370.
44. Keller, G., Warrack, B., & Bartel, H. (1994). Statistics for management and economics. Belmont, CA: Duxbury Press.
45. Kotz, S., & Johnson, N. L. (2002). Process capability indices—a review, 1992–2000. Journal of quality technology, 34(1), 2-19.
46. Lawless, J. F. (1982). Statistical methods and model for lifetime data (Vol. 52). NY: Wiley&Sons.
47. Lee, W. C. (2010). Assessing the lifetime performance index of gamma lifetime products in the manufacturing industry. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(10), 1571-1579.
48. Liao, M. Y. (2016). Markov chain Monte Carlo in Bayesian models for testing gamma and lognormal S-type process qualities. International Journal of Production Research, 54(24), 7491-7503.
49. Liao, M. Y. (2017). Efficient Technique for Assessing Actual Non‐normal Quality Loss: Markov Chain Monte Carlo. Quality and Reliability Engineering International, 33(5), 945-957.
50. Liao, M. Y., & Wu, C. W. (2018). Supplier selection based on normal process yield: the Bayesian inference. Neural Computing and Applications, 1-13.
51. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), 1087-1092.
52. Meyer, P. L. (1965). Introductory probability and statistical applications. Boston, MA: Addison-Wesley.
53. Montgomery, D. C. (1985). Introduction to statistical quality control. NY: John Wiley & Sons.
54. Pearn, W. L., & Chen, K. S. (1997). Capability indices for non-normal distributions with an application in electrolytic capacitor manufacturing. Microelectronics Reliability, 37(12), 1853-1858.
55. Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of quality technology, 24(4), 216-231.
56. Pearn, W. L., Lin, G. H., & Chen, K. S. (1998). Distributional and inferential properties of the process accuracy and process precision indices. Communications in Statistics-Theory and methods, 27(4), 985-1000.
57. Pearn, W. L., & Wu, C. W. (2005). Process capability assessment for index Cpk based on Bayesian approach. Metrika, 61(2), 221-234.
58. Rinne, H. (2008). The Weibull distribution: a handbook: Chapman and Hall/CRC.
59. Ripley, B. D. (1987). Stochastic simulation. NY: Wiley
60. Robert, C. P., & Casella, G. (2010). Monte Carlo Statistical Methods: Springer Publishing Company, Incorporated.
61. Rodriguez, R. N. (1992). Recent developments in process capability analysis. Journal of quality technology, 24(4), 176-187.
62. Shiau, J. J. H., Chiang, C. T., & Hung, H. N. (1999). A Bayesian procedure for process capability assessment. Quality and Reliability Engineering International, 15(5), 369-378.
63. Somerville, S. E., & Montgomery, D. C. (1996). Process capability indices and non-normal distributions. Quality Engineering, 9(2), 305-316.
64. Son, Y. S., & Oh, M. (2006). Bayesian estimation of the two-parameter Gamma distribution. Communications in Statistics-Simulation and Computation, 35(2), 285-293.
65. Tierney, L. (1994). Markov chains for exploring posterior distributions. the Annals of Statistics, 1701-1728.
66. Tong, L. I., Chen, K. S., & Chen, H. T. (2002). Statistical testing for assessing the performance of lifetime index of electronic components with exponential distribution. International Journal of Quality & Reliability Management, 19(7), 812-824.
67. Tsionas, E. G. (2001). Exact inference in four-parameter generalized gamma distributions. Communications in Statistics-Theory and methods, 30(4), 747-756.
68. Upadhyay, S. K., Vasishta, N., & Smith, A. F. (2001). Bayes inference in life testing and reliability via Markov chain Monte Carlo simulation. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002), 63(1), 15-40.
69. Weibull, W. (1939). A statistical theory of strength of materials. IVB-Handl.
70. Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of applied mechanics, 18(3), 293-297.
71. Wu, C. W., & Lin, T. Y. (2009). A Bayesian procedure for assessing process performance based on the third-generation capability index. Journal of Applied Statistics, 36(11), 1205-1223.
72. Wu, C. W., Pearn, W. L., & Kotz, S. (2009). An overview of theory and practice on process capability indices for quality assurance. International journal of production economics, 117(2), 338-359.
73. Yang, R., & Berger, J. O. (1996). A catalog of noninformative priors.
74. Yum, B. J., & Kim, K. W. (2011). A bibliography of the literature on process capability indices: 2000–2009. Quality and Reliability Engineering International, 27(3), 251-268.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *