|
一、 中文文獻 1. 李端 (2016)。建構產品壽命服從韋伯分配之壽命檢定計畫,國立清華大學工業工程與工程管理學系碩士論文,未出版,新竹市。 2. 劉丞軒 (2016)。基於伽瑪分配之壽命績效指標發展重覆遞交與群集驗收抽樣計畫,國立清華大學工業工程與工程管理學系碩士論文,未出版,新竹市。 3. 黃亭穎 (2018)。基於良率指標發展製程良率評估程序之研究,國立清華大學工業工程與工程管理學系碩士論文,未出版,新竹市。 二、 英文文獻 1. Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., & Cochran, J. J. (1990). Statistics for business & economics. Saint Paul, MN: West Publishing Company. 2. Balamurali, S., & Kalyanasundaram, M. (2002). Bootstrap lower confidence limits for the process capability indices Cp, Cpk and Cpm. International Journal of Quality & Reliability Management, 19(8/9), 1088-1097. 3. Bernardo, J. M., & Smith, A. F. (1993). Bayesian theory: John Wiley & Sons. 4. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243. 5. Box, G. E., & Tiao, G. C. (2011). Bayesian inference in statistical analysis (Vol. 40): John Wiley & Sons. 6. Boyles, R. A. (1991). The Taguchi capability index. Journal of quality technology, 23(1), 17-26. 7. Boyles, R. A. (1994). Brocess capability with asymmetric tolerances. Communications in Statistics-Simulation and Computation, 23(3), 615-635. 8. Buckland, W. R. (1964). Statistical assessment of the life characteristic: a bibliographic guide (Vol. 13): Hafner. 9. Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46(3), 167-174. 10. Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability: Cpm. Journal of quality technology, 20(3), 162-175. 11. Cheng, S. W., & Spiring, F. A. (1989). Assessing process capability: a Bayesian approach. IIE transactions, 21(1), 97-98. 12. Clements, J. A. (1989). Process capability calculations, for non-normal distributions. Quality Progress, 22, 95-100. 13. Cohen, A. C. (1965). Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics, 7(4), 579-588. 14. Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91(434), 883-904. 15. Cox, D. R. (1962). Renewal Theory, Methuen and Co. Ltd. 16. Devroye, L. (1986). Non-uniform Random Variate Generation. 17. Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. the Annals of Statistics, 7(1), 1-26. 18. Efron, B. (1981). Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika, 68(3), 589-599. 19. Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. Society for industrial and applied mathematics. 20. Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171-185. 21. Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37(1), 36-48. 22. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54-75. 23. Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap: CRC press. 24. English, J. R., & Taylor, G. D. (1993). Process capability analysis—a robustness study. The international journal of production research, 31(7), 1621-1635. 25. Epstein, B., & Sobel, M. (1953). Life testing. Journal of the American Statistical Association, 48(263), 486-502. 26. Farrell, S., & Ludwig, C. J. (2008). Bayesian and maximum likelihood estimation of hierarchical response time models. Psychonomic bulletin & review, 15(6), 1209-1217. 27. Franklin, L. A., & Wasserman, G. (1991). Bootstrap confidence interval estimates of Cpk: an introduction. Communications in Statistics-Simulation and Computation, 20(1), 231-242. 28. Franklin, L. A., & Wasserman, G. S. (1992). Bootstrap lower confidence limits for capability indices. Journal of quality technology, 24(4), 196-210. 29. Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409. 30. Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741. 31. Geyer, C. J. (1992). Practical markov chain monte carlo. Statistical science, 473-483. 32. Gilks, W. R. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. Bayesian statistics, 4(2), 641-649. 33. Gilks, W. R. (2005). Markov Chain Monte Carlo. Encyclopedia of Biostatistics, 4. 34. Gilks, W. R., Best, N. G., & Tan, K. K. C. (1995a). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 455-472. 35. Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995b). Markov chain Monte Carlo in practice: Chapman and Hall/CRC. 36. Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41(2), 337-348. 37. Green, E. J., Roesch Jr, F. A., Smith, A. F., & Strawderman, W. E. (1994). Bayesian estimation for the three-parameter Weibull distribution with tree diameter data. Biometrics, 254-269. 38. Gunter, B. H. (1989). The use and abuse of Cpk. Quality Progress, 22(1), 72-73. 39. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109. 40. Jeffreys, H. (1998). The theory of probability: OUP Oxford. 41. Juran, J. M., Gryna, F. M., & Bingham, R. S. (1974). Quality control handbook: McGraw-Hill New York. 42. Kane, V. E. (1986). Process capability indices. Journal of quality technology, 18(1), 41-52. 43. Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343-1370. 44. Keller, G., Warrack, B., & Bartel, H. (1994). Statistics for management and economics. Belmont, CA: Duxbury Press. 45. Kotz, S., & Johnson, N. L. (2002). Process capability indices—a review, 1992–2000. Journal of quality technology, 34(1), 2-19. 46. Lawless, J. F. (1982). Statistical methods and model for lifetime data (Vol. 52). NY: Wiley&Sons. 47. Lee, W. C. (2010). Assessing the lifetime performance index of gamma lifetime products in the manufacturing industry. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(10), 1571-1579. 48. Liao, M. Y. (2016). Markov chain Monte Carlo in Bayesian models for testing gamma and lognormal S-type process qualities. International Journal of Production Research, 54(24), 7491-7503. 49. Liao, M. Y. (2017). Efficient Technique for Assessing Actual Non‐normal Quality Loss: Markov Chain Monte Carlo. Quality and Reliability Engineering International, 33(5), 945-957. 50. Liao, M. Y., & Wu, C. W. (2018). Supplier selection based on normal process yield: the Bayesian inference. Neural Computing and Applications, 1-13. 51. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), 1087-1092. 52. Meyer, P. L. (1965). Introductory probability and statistical applications. Boston, MA: Addison-Wesley. 53. Montgomery, D. C. (1985). Introduction to statistical quality control. NY: John Wiley & Sons. 54. Pearn, W. L., & Chen, K. S. (1997). Capability indices for non-normal distributions with an application in electrolytic capacitor manufacturing. Microelectronics Reliability, 37(12), 1853-1858. 55. Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of quality technology, 24(4), 216-231. 56. Pearn, W. L., Lin, G. H., & Chen, K. S. (1998). Distributional and inferential properties of the process accuracy and process precision indices. Communications in Statistics-Theory and methods, 27(4), 985-1000. 57. Pearn, W. L., & Wu, C. W. (2005). Process capability assessment for index Cpk based on Bayesian approach. Metrika, 61(2), 221-234. 58. Rinne, H. (2008). The Weibull distribution: a handbook: Chapman and Hall/CRC. 59. Ripley, B. D. (1987). Stochastic simulation. NY: Wiley 60. Robert, C. P., & Casella, G. (2010). Monte Carlo Statistical Methods: Springer Publishing Company, Incorporated. 61. Rodriguez, R. N. (1992). Recent developments in process capability analysis. Journal of quality technology, 24(4), 176-187. 62. Shiau, J. J. H., Chiang, C. T., & Hung, H. N. (1999). A Bayesian procedure for process capability assessment. Quality and Reliability Engineering International, 15(5), 369-378. 63. Somerville, S. E., & Montgomery, D. C. (1996). Process capability indices and non-normal distributions. Quality Engineering, 9(2), 305-316. 64. Son, Y. S., & Oh, M. (2006). Bayesian estimation of the two-parameter Gamma distribution. Communications in Statistics-Simulation and Computation, 35(2), 285-293. 65. Tierney, L. (1994). Markov chains for exploring posterior distributions. the Annals of Statistics, 1701-1728. 66. Tong, L. I., Chen, K. S., & Chen, H. T. (2002). Statistical testing for assessing the performance of lifetime index of electronic components with exponential distribution. International Journal of Quality & Reliability Management, 19(7), 812-824. 67. Tsionas, E. G. (2001). Exact inference in four-parameter generalized gamma distributions. Communications in Statistics-Theory and methods, 30(4), 747-756. 68. Upadhyay, S. K., Vasishta, N., & Smith, A. F. (2001). Bayes inference in life testing and reliability via Markov chain Monte Carlo simulation. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002), 63(1), 15-40. 69. Weibull, W. (1939). A statistical theory of strength of materials. IVB-Handl. 70. Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of applied mechanics, 18(3), 293-297. 71. Wu, C. W., & Lin, T. Y. (2009). A Bayesian procedure for assessing process performance based on the third-generation capability index. Journal of Applied Statistics, 36(11), 1205-1223. 72. Wu, C. W., Pearn, W. L., & Kotz, S. (2009). An overview of theory and practice on process capability indices for quality assurance. International journal of production economics, 117(2), 338-359. 73. Yang, R., & Berger, J. O. (1996). A catalog of noninformative priors. 74. Yum, B. J., & Kim, K. W. (2011). A bibliography of the literature on process capability indices: 2000–2009. Quality and Reliability Engineering International, 27(3), 251-268.
|