帳號:guest(3.143.218.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡芸熙
作者(外文):Chien, Yun-Hsi
論文名稱(中文):基因演算法應用於含燒機之組裝線排程問題
論文名稱(外文):Application of Genetic Algorithm for Assembly Scheduling Problem with Burn-in Test
指導教授(中文):林則孟
指導教授(外文):Lin, James T.
口試委員(中文):陳盈彥
林東盈
邱俊智
口試委員(外文):Chen, Ying-Yan
Lin, Dong-Ying
Chun, Chih-Chiu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034561
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:97
中文關鍵詞:非等效平行機台排程批次排程基因演算法
外文關鍵詞:unrelated parallel machine schedulingbatch schedulinggenetic algorithm
相關次數:
  • 推薦推薦:0
  • 點閱點閱:366
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本研究主要探討變頻器電子組裝產業後段組裝製程之排程問題。聚焦於組裝線製程並將組裝線視為非等效平行機台(unrelated parallel machine scheduling),同時考慮次站的燒機問題。燒機站為批次排程問題,批次排程又可分為兩個決策點,第一,決定批次的組成,第二,將批次進行機台指派。本研究主要探討組裝線排程與燒機站的批次組成問題,考量生產系統的特性與限制,包含:機台限制、順序相依設置時間、不同容量大小、可用電壓級距限制等。
本研究在Joo & Kim(2015)以及Basir et al.(2018)提出的基因演算法架構下,根據問題特性做變化,提出「二階段排程基因演算法」與「整合式排程基因演算法」。「二階段排程基因演算法」主要提出一個進行機台排程同時粗估燒機站容量使用的派工法,另外,根據裝箱問題文獻提出一個優化批次組成的啟發式算法。「整合式排程基因演算法」則是將問題特性融入重新設計染色體組成,使組裝線排程與燒機的批次組成問題能夠在整合式方法中一次解決。
本研究經實驗發現在不同工單數量的問題下「二階段排程基因演算法」的求解效率表現較「整合式排程基因演算法」為佳。總結來說,進行組裝線排程時粗略估計工單使用的電壓級距容量,組裝線排程完成後再根據工單來到的先後順序進行批次組成,在本研究範圍內有較好的表現。

關鍵詞:非等效平行機台排程、批次排程、基因演算法
This research investigates the scheduling of the assembly process in the back-end process of the variable-frequency drive assembly industry. The assembly line process is regard as an unrelated parallel machine scheduling. Also, parallel batch scheduling problem at burn-in station is considered. The batch scheduling can be divided into two decisions: (i) forming the batches; and (ii) assigning batches to the machines. This study mainly discusses the assembly line scheduling and the batch forming of the burn-in test station and considering the production characteristics: machine eligibility, sequence-dependent setup time, different capacity and burn-in level availability.
In this research, based on the genetic algorithm framework proposed by Joo & Kim (2015) and Basir et al. (2018), two heuristic models are developed to solve this problem. The “two-stage scheduling genetic algorithm” proposes a dispatching method that performs machine scheduling and roughly estimates the capacity of the burn-in station. In addition, an algorithm for optimizing batch forming is proposed based on the bin packing problem. "Integrated scheduling genetic algorithm" is to combine the characteristics of the problem into the chromosome composition, so that the assembly line scheduling and the batch forming can be solved at one time by the integrated method.
It is shown that the "two-stage scheduling genetic algorithm" performs better than the "integrated scheduling genetic algorithm" in both solution efficiency and performance. In the conclusion, if the burn-in level capacity is roughly estimated when arranging assembly line schedule, the batch forming will outperform in this research.
Keywords: Unrelated parallel machine scheduling, Batch scheduling, Genetic algorithm
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍 2
1.4 研究步驟 3
第二章 變頻器電子組裝廠個案分析 4
2.1 組裝廠產業與生產製程 4
2.2 製程生產特性 5
2.2.1 組裝線生產特性 6
2.2.2 燒機站生產特性 6
2.3 生產規劃 7
2.3.1 生產規劃說明 7
2.3.2 生產規劃範例 9
2.4 變頻器組立站排程與燒機站排程問題特性分析 15
2.4.1 組立站排程分析 15
2.4.2 燒機站排程分析 19
2.4.3 組立站與燒機站關係分析 27
2.5 問題說明 30
第三章 文獻回顧 32
3.1 排程環境分類與問題特性 32
3.2 平行機台排程問題相關文獻 34
3.3 批次排程相關文獻 37
3.4 基因演算法相關文獻 40
3.5 文獻回顧小結 48
第四章 基因演算法應用於含燒機之組裝線排程問題 50
4.1 問題描述 50
4.1.1 問題特性 50
4.1.2 問題假設條件 51
4.1.3 績效指標規劃 52
4.2 基因演算法研究方法 54
4.3 「二階段排程基因演算法」 57
4.4 「整合式排程基因演算法」 65
4.5 兩個方法之差異 75
4.6 實驗結果與分析 76
4.6.1 實驗資料說明 77
4.6.2 實驗結果與分析 79
第五章 結論與建議 88
5.1 結論 88
5.2 建議 89
參考文獻 90
附錄 93
參考文獻
[1]. 林則孟(2012),生產計畫與管理,華泰文化。
[2]. 李宇笙(2018),「穩健最佳化應用於平行機台排程問題」,國立清華大學工業工程與工程管理研究所碩士論文。
[3]. Arroyo, J. E. C., & Leung, J. Y. T. (2017). Scheduling unrelated parallel batch processing machines with non-identical job sizes and unequal ready times. Computers & Operations Research, 78, 117-128.
[4]. Afzalirad, M., & Shafipour, M. (2018). Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions. Journal of Intelligent Manufacturing, 29(2), 423-437.
[5]. Basir, S. A., Mazdeh, M. M., & Namakshenas, M. (2018). Bi-level genetic algorithms for a two-stage assembly flow-shop scheduling problem with batch delivery system. Computers & Industrial Engineering, 126, 217-231.
[6]. Bramel, J., & Simchi-Levi, D. (1997). The logic of logistics: theory, algorithms, and applications for logistics management (pp. 175-240). New York: Springer.
[7]. Centeno, G., & Armacost, R. L. (1997). Parallel machine scheduling with release time and machine eligibility restrictions. Computers & industrial engineering, 33(1-2), 273-276
[8]. Damodaran, P., Srihari, K., & Lam, S. S. (2007). Scheduling a capacitated batch-processing machine to minimize makespan. Robotics and Computer-Integrated Manufacturing, 23(2), 208-216.
[9]. Damodaran, P., & Chang, P. Y. (2008). Heuristics to minimize makespan of parallel batch processing machines. The International Journal of Advanced Manufacturing Technology, 37(9-10), 1005-1013.
[10]. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. In Annals of discrete mathematics (Vol. 5, pp. 287-326). Elsevier.
[11]. Gokhale, R., & Mathirajan, M. (2012). Scheduling identical parallel machines with machine eligibility restrictions to minimize total weighted flowtime in automobile gear manufacturing. International Journal of Advanced Manufacturing Technology, 60(9–12), 1099–1110.
[12]. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). San Francisco: freeman.
[13]. Joo, C. M., & Kim, B. S. (2012). Parallel machine scheduling problem with ready times, due times and sequence-dependent setup times using meta-heuristic algorithms. Engineering Optimization, 44(9), 1021-1034.
[14]. Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability. Computers & Industrial Engineering, 85, 102-109.
[15]. Koh, S. G., Koo, P. H., Ha, J. W., & Lee, W. S. (2004). Scheduling parallel batch processing machines with arbitrary job sizes and incompatible job families. International Journal of Production Research, 42(19), 4091-4107.
[16]. Liao, L. W., & Sheen, G. J. (2008). Parallel machine scheduling with machine availability and eligibility constraints. European Journal of Operational Research, 184(2), 458-467.
[17]. Lausch, S., & Mönch, L. (2016). Metaheuristic approaches for scheduling jobs on parallel batch processing machines. In Heuristics, Metaheuristics and Approximate Methods in Planning and Scheduling (pp. 187-207). Springer, Cham.
[18]. Pinedo, M. (2012). Scheduling (Vol. 29). New York: Springer.
[19]. Piersma, N., & van Dijk, W. (1996). A local search heuristic for unrelated parallel machine scheduling with efficient neighborhood search. Mathematical and Computer Modelling, 24(9), 11-19.
[20]. Uzsoy, R. (1994). Scheduling a single batch processing machine with non-identical job sizes. The International Journal of Production Research, 32(7), 1615-1635.
[21]. Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research, 211(3), 612-622.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *