|
參考文獻 [1]. 林則孟(2012),生產計畫與管理,華泰文化。 [2]. 李宇笙(2018),「穩健最佳化應用於平行機台排程問題」,國立清華大學工業工程與工程管理研究所碩士論文。 [3]. Arroyo, J. E. C., & Leung, J. Y. T. (2017). Scheduling unrelated parallel batch processing machines with non-identical job sizes and unequal ready times. Computers & Operations Research, 78, 117-128. [4]. Afzalirad, M., & Shafipour, M. (2018). Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions. Journal of Intelligent Manufacturing, 29(2), 423-437. [5]. Basir, S. A., Mazdeh, M. M., & Namakshenas, M. (2018). Bi-level genetic algorithms for a two-stage assembly flow-shop scheduling problem with batch delivery system. Computers & Industrial Engineering, 126, 217-231. [6]. Bramel, J., & Simchi-Levi, D. (1997). The logic of logistics: theory, algorithms, and applications for logistics management (pp. 175-240). New York: Springer. [7]. Centeno, G., & Armacost, R. L. (1997). Parallel machine scheduling with release time and machine eligibility restrictions. Computers & industrial engineering, 33(1-2), 273-276 [8]. Damodaran, P., Srihari, K., & Lam, S. S. (2007). Scheduling a capacitated batch-processing machine to minimize makespan. Robotics and Computer-Integrated Manufacturing, 23(2), 208-216. [9]. Damodaran, P., & Chang, P. Y. (2008). Heuristics to minimize makespan of parallel batch processing machines. The International Journal of Advanced Manufacturing Technology, 37(9-10), 1005-1013. [10]. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. In Annals of discrete mathematics (Vol. 5, pp. 287-326). Elsevier. [11]. Gokhale, R., & Mathirajan, M. (2012). Scheduling identical parallel machines with machine eligibility restrictions to minimize total weighted flowtime in automobile gear manufacturing. International Journal of Advanced Manufacturing Technology, 60(9–12), 1099–1110. [12]. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). San Francisco: freeman. [13]. Joo, C. M., & Kim, B. S. (2012). Parallel machine scheduling problem with ready times, due times and sequence-dependent setup times using meta-heuristic algorithms. Engineering Optimization, 44(9), 1021-1034. [14]. Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability. Computers & Industrial Engineering, 85, 102-109. [15]. Koh, S. G., Koo, P. H., Ha, J. W., & Lee, W. S. (2004). Scheduling parallel batch processing machines with arbitrary job sizes and incompatible job families. International Journal of Production Research, 42(19), 4091-4107. [16]. Liao, L. W., & Sheen, G. J. (2008). Parallel machine scheduling with machine availability and eligibility constraints. European Journal of Operational Research, 184(2), 458-467. [17]. Lausch, S., & Mönch, L. (2016). Metaheuristic approaches for scheduling jobs on parallel batch processing machines. In Heuristics, Metaheuristics and Approximate Methods in Planning and Scheduling (pp. 187-207). Springer, Cham. [18]. Pinedo, M. (2012). Scheduling (Vol. 29). New York: Springer. [19]. Piersma, N., & van Dijk, W. (1996). A local search heuristic for unrelated parallel machine scheduling with efficient neighborhood search. Mathematical and Computer Modelling, 24(9), 11-19. [20]. Uzsoy, R. (1994). Scheduling a single batch processing machine with non-identical job sizes. The International Journal of Production Research, 32(7), 1615-1635. [21]. Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research, 211(3), 612-622.
|