帳號:guest(18.217.96.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周博仁
作者(外文):Chou, Po-Jen
論文名稱(中文):考量拆批與天車搬運問題之最小化完工時間與能源成本的彈性零工式生產排程
論文名稱(外文):Scheduling in Flexible Job Shop with Lot Streaming and Crane Transportation considering Makespan and Total Energy Cost
指導教授(中文):陳建良
指導教授(外文):Chen, James C.
口試委員(中文):陳子立
張秉宸
口試委員(外文):Chen, Tzu-Li
Chang, Ping-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034548
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:116
中文關鍵詞:彈性零工式生產排程時間電價契約容量能源成本最大完工時間非支配排序III實驗設計
外文關鍵詞:flexible job shop scheduling problemtime-of-use tariffcontract capacityenergy costmakespannon-dominated sorting genetic algorithm IIIdesign of experiment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:445
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在製造相關行業的排程問題,傳統上考量的目標通常是最短完工時間、最短遲交天數及最少機台設置時間,能源成本、對環境造成的影響很少被納入考慮。本研究中,為計算機台能源消耗,將機台運轉分成四種狀態:開/關機狀態、閒置狀態、機台設置狀態及運轉狀態。接著,由台電提供的電價計算公式,例如時間電價與契約容量,將能源消耗量換算成能源成本。訂單拆批的批數、分配到的機台、機台稼動速度以及能源消耗的時間點都會造成兩個目標間的取捨。因此,此篇論文提出數學模型及基於非支配排序III的節能多目標基因演算法應用於拆批與天車搬運問題的彈性零工式生產排程,以最小化最大完工時間及能源成本。之後,以實驗設計取得節能多目標基因演算法的最佳參數設定。接著比較不同多目標演算法的以驗證節能多目標基因演算法的有效性。最後實驗結果證實此篇研究提出的節能多目標基因演算法可以有效的求解拆批與天車搬運問題的彈性零工式生產排程問題。
Traditional scheduling problems in manufacturing systems considers objectives such as makespan, tardiness, and setup time, but seldom take energy cost, and other environmental impacts into account. In the research, machining states including turning on/off machine, idle, setup, and processing state are considered with different energy consumption rate. The energy cost is then computed with the formula provided by Taipower with time-of-use tariff and contract capacity. Decisions such as the number of lots in an order, which machine to assign, what processing speed, when to transport will cause trade-off between the objectives. Therefore, the paper proposed a mathematical model and a non-dominated sorting genetic algorithm III (NSGAIII) based energy-efficient multi-objective genetic algorithm (EEMOGA) to solve flexible job shop scheduling problem (FJSSP) with crane transportation and lot streaming considering makespan and energy cost. The design of experiment (DOE) is used to find optimal setting of the EEMOGA. Then other multi-objective methods are compared, to show the effectiveness of the proposed EEMOGA. The experimental results experiment results prove that the proposed algorithm can solve the problem effectively and efficiently.
摘要……………………………………………………………………………….I
Abstract.…………………………………………………………………………..II
致謝………………………………………………………………………………III
Contents……………………………………………….…………………………IV
List of Figure……………………………………………………………….......VII
List of Table……………………………………………………………………..IX
Chapter 1 Introduction……………………………………………………….1
1.1 Background………………………………………………………………1
1.2 Objectives………………………………………………………………...2
1.3 Research Method…………………………………………………………3
1.4 Organization of Thesis……………………………………………………5
Chapter 2 Literature Review………………………………………………….6
2.1 Energy-efficient flexible job shop scheduling problem………………….6
2.2 Lot streaming…………………………………………………………….11
2.3 Genetic algorithm in multi-objective problems………………………….12
Chapter 3 Problem Definition………………………………………………..14
3.1 Problem Statement………………………………………………………..14
3.2 Assumptions and Notations…….………………………………………..19
3.3 Energy Cost description………………………………………………….27
3.3.1 Energy Consumption of CNC machine………………………………..27
3.3.2 Energy Consumption from Crane Transportation……………………..30
3.3.3 Energy Cost Formulation………………………………………………33
3.4 Problem Formulation…………………………………………………….35
Chapter 4 Methodology………………………………………………………37
4.1 Framework of Energy-Efficient Multi-Objective Genetic Algorithm……37
4.2 Steps of Energy-Efficient Multi-Objective Genetic Algorithm…………..38
4.2.1 Encoding and Decoding…………………………………………………38
4.2.2 Initial population generation…………………………………………….40
4.2.3 Selection…………………………………………………………………44
4.2.4 Crossover………………………………………………………………..44
4.2.5 Mutation…………………………………………………………………49
4.2.6 Local search……………………………………………………………..53
4.2.7 Fitness evaluation………………………………………………………..55
4.2.8 Next population generation………………………………………………55
4.2.9 Pseudocode of proposed EEMOGA……………………………………..56
Chapter 5 Computational Study………………………………………………...60
5.1 Parameter design and evaluation of proposed EEMOGA ………………….60
5.1.1 Performance criteria……………………………………………………….60
5.1.2 Experiment layout……………………………………………………….61
5.1.3 Description of the test data………………………………………………62
5.1.4 Parameter settings………………………………………………………..65
5.1.5 Comparison between Methodologies and result discussion……………..70
5.2 Parameter Analysis………………………………………………………….73
5.2.1 Contract capacity………………………………………………………….73
5.2.2 Crane energy consumption………………………………………………..75
5.2.3 Crane transportation speed………………………………………………..76
5.2.4 Machine threshold…………………………………………………………78
5.2.5 Machine operation speed………………………………………………….79
5.2.6 Energy consumption difference on each machine…………………………81
5.2.7 Operation time difference on each machine……………………………….82
Chapter 6 Conclusion……………………………………………………………84
Reference……………………………………………………………………………..86
Appendix……………………………………………………………………………..90
Appendix A: Part information………………………………………………………..90
Appendix B: Design of Experiment Data Table……………………………………..95
1.Chen, C. Y., & Liao, C. J. (2011). A linear programming approach to the electricity contract capacity problem. Applied Mathematical Modelling, 35(8), 4077-4082.
2.Chen, T. L., Cheng, C. Y., & Chou, Y. H. (2018). Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming. Annals of Operations Research, 1-24.
3.Chen, T. L., Chen, J. C., Hung, H. C., & Ou, T. C. (2018) Solving the loading balance problem in the photolithography area, 2018 International Symposium on Business and Management (ISBM 2018), Osaka, Japan, April 1-3, 2018.
4.Coello, C. A. C. C., & Pulido, G. T. (2001, March). A micro-genetic algorithm for multiobjective optimization. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 126-140). Springer, Berlin, Heidelberg.
5.Czyz˙zak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—A metaheuristic technique for multipleobjective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1), 34–47.
6.Dauzere-Peres, S., & Lasserre, J. B. (1993). An iterative procedure for lot streaming in job-shop scheduling. Computers & Industrial Engineering, 25(1-4), 231-234.
7.Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601.
8.Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
9.Gao, J., Sun, L., & Gen, M. (2008). A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Computers & Operations Research, 35(9), 2892-2907.
10.Lei, D., Li, M., & Wang, L. (2018). A two-phase meta-heuristic for multiobjective flexible job shop scheduling problem with total energy consumption threshold. IEEE Transactions on Cybernetics, 49(3), 1097-1109.
11.Lei, D., Zheng, Y., & Guo, X. (2017). A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption. International Journal of Production Research, 55(11), 3126-3140.
12.Liu, Z., Guo, S., & Wang, L. (2019). Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption. Journal of Cleaner Production, 211, 765-786.
13.Liu, S. C. (2003). A heuristic method for discrete lot streaming with variable sublots in a flow shop. The International Journal of Advanced Manufacturing Technology, 22(9-10), 662-668.
14.Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352.
15.Newman, S. T., Nassehi, A., Imani-Asrai, R., & Dhokia, V. (2012). Energy efficient process planning for CNC machining. CIRP Journal of Manufacturing Science and Technology, 5(2), 127-136.
16.Piroozfard, H., Wong, K. Y., & Wong, W. P. (2018). Minimizing total carbon footprint and total late work criterion in flexible job shop scheduling by using an improved multi-objective genetic algorithm. Resources, Conservation and Recycling, 128, 267-283.
17.Reiter, S. (1966). A system for managing job-shop production. The Journal of Business, 39(3), 371-393.
18.Rohaninejad, M., Kheirkhah, A., & Fattahi, P. (2015). Simultaneous lot-sizing and scheduling in flexible job shop problems. The International Journal of Advanced Manufacturing Technology, 78(1-4), 1-18.
19.Rohaninejad, M., Kheirkhah, A., Fattahi, P., & Vahedi-Nouri, B. (2015). A hybrid multi-objective genetic algorithm based on the ELECTRE method for a capacitated flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 77(1-4), 51-66.
20.Sharma, A., Zhao, F., & Sutherland, J. W. (2015). Econological scheduling of a manufacturing enterprise operating under a time-of-use electricity tariff. Journal of Cleaner Production, 108, 256-270.
21.Tan, K. C., Goh, C. K., Yang, Y., & Lee, T. H. (2006). Evolving better population distribution and exploration in evolutionary multi-objective optimization. European Journal of Operational Research, 171(2), 463–495.
22.Ulungu, E., Teghem, J., & Ost, C. (1998). Efficiency of interactive multi-objective simulated annealing through a case study. Journal of the Operational Research Society, 49(10), 1044–1050.
23.Wagner, B. J., & Ragatz, G. L. (1994). The impact of lot splitting on due date performance. Journal of Operations management, 12(1), 13-25.
24.Wang, H., Jiang, Z., Wang, Y., Zhang, H., & Wang, Y. (2018). A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization. Journal of Cleaner Production, 188, 575-588.
25.Wang, X., Gao, L., Zhang, C., & Shao, X. (2010). A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 51(5-8), 757-767.
26.Wu, J. Z., Chien, C. F., & Gen, M. (2012). Coordinating strategic outsourcing decisions for semiconductor assembly using a bi-objective genetic algorithm. International Journal of Production Research, 50(1), 235-260.
27.Wu, X., & Sun, Y. (2018). A green scheduling algorithm for flexible job shop with energy-saving measures. Journal of cleaner production, 172, 3249-3264.
28.Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375.
29.Zhang, Z., Wu, L., Peng, T., & Jia, S. (2019). An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment. Sustainability, 11(1), 179.
30.Zhang, Z., Tang, R., Peng, T., Tao, L., & Jia, S. (2016). A method for minimizing the energy consumption of machining system: integration of process planning and scheduling. Journal of Cleaner Production, 137, 1647-1662.
31.Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 103.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *