|
1. Bowley, C., Andes, A., Ellis-Felege, S., & Desell, T. (2016, October). Detecting wildlife in uncontrolled outdoor video using convolutional neural networks. In 2016 IEEE 12th International Conference on e-Science (e-Science) (pp. 251-259). IEEE. 2. Burghardt, T., & Ćalić, J. (2006). Analysing animal behaviour in wildlife videos using face detection and tracking. IEE Proceedings-Vision, Image and Signal Processing, 153(3), 305-312. 3. Cheema, G. S., & Anand, S. (2017, September). Automatic detection and recognition of individuals in patterned species. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 27-38). Springer, Cham. 4. Chen, G., Han, T. X., He, Z., Kays, R., & Forrester, T. (2014, October). Deep convolutional neural network based species recognition for wild animal monitoring. In 2014 IEEE International Conference on Image Processing (ICIP) (pp. 858-862). IEEE. 5. Choi, S. (2015). Fish Identification in Underwater Video with Deep Convolutional Neural Network: SNUMedinfo at LifeCLEF Fish task 2015. In CLEF (Working Notes). 6. Chu, W., & Cai, D. (2018). Deep feature based contextual model for object detection. Neurocomputing, 275, 1035-1042. 7. Chuang, M. C., Hwang, J. N., & Williams, K. (2016). A feature learning and object recognition framework for underwater fish images. IEEE Transactions on Image Processing, 25(4), 1862-1872. 8. Forson, E. (2017, Nov 18). Understanding SSD MultiBox — Real-Time Object Detection In Deep Learning. Medium. Retrieved August 12, 2019, from https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab 9. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. vol. 1. 10. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48. 11. Han, J., Zhang, D., Cheng, G., Liu, N., & Xu, D. (2018). Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Processing Magazine, 35(1), 84-100. 12. Huang, T. (2018, July 10). Machine Learning/Statistics Method: Model Evaluation—Validation Index. Medium. Retrieved July 4, 2019, from https://medium.com/@chih.sheng.huang821 13. Hulstaert, L. (2018, Apr 23). Going deep into object detection. Medium. Retrieved August 12, 2019, from https://towardsdatascience.com/going-deep-into-object-detection-bed442d92b34 14. Jäger, J., Rodner, E., Denzler, J., Wolff, V., & Fricke-Neuderth, K. (2016). SeaCLEF 2016: Object Proposal Classification for Fish Detection in Underwater Videos. In CLEF (Working Notes) (pp. 481-489). 15. Kathuria, A. (2018, April 23). What’s new in YOLO v3? Medium. Retrieved July 4, 2019, from https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b 16. Kellenberger, B., Volpi, M., & Tuia, D. (2017, July). Fast animal detection in UAV images using convolutional neural networks. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 866-869). IEEE. 17. Kortli, Y., Jridi, M., Al Falou, A., & Atri, M. (2018, April). A comparative study of CFs, LBP, HOG, SIFT, SURF, and BRIEF techniques for face recognition. In Pattern Recognition and Tracking XXIX (Vol. 10649, p. 106490M). International Society for Optics and Photonics. 18. Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 160, 3-24. 19. Kumar, G., & Bhatia, P. K. (2014, February). A detailed review of feature extraction in image processing systems. In 2014 Fourth international conference on advanced computing & communication technologies (pp. 5-12). IEEE. 20. Li, X., Shang, M., Hao, J., & Yang, Z. (2016, April). Accelerating fish detection and recognition by sharing CNNs with objectness learning. In OCEANS 2016-Shanghai (pp. 1-5). IEEE. 21. Li, X., Shang, M., Qin, H., & Chen, L. (2015, October). Fast accurate fish detection and recognition of underwater images with fast r-cnn. In OCEANS 2015-MTS/IEEE Washington (pp. 1-5). IEEE. 22. Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988). 23. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer, Cham. 24. Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International journal of Remote sensing, 28(5), 823-870. 25. Mehrnejad, M., Albu, A. B., Capson, D., & Hoeberechts, M. (2013, September). Detection of stationary animals in deep-sea video. In 2013 OCEANS-San Diego (pp. 1-5). IEEE. 26. Nath, S. S., Mishra, G., Kar, J., Chakraborty, S., & Dey, N. (2014, July). A survey of image classification methods and techniques. In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) (pp. 554-557). IEEE. 27. Zeng, N. (2018, December 5). RetinaNet Explained and Demystified. Academic. Retrieved August 12, 2019, from https://blog.zenggyu.com/en/post/2018-12-05/retinanet-explained-and-demystified/ 28. Parham, J., & Stewart, C. (2016, March). Detecting plains and Grevy's Zebras in the realworld. In 2016 IEEE Winter Applications of Computer Vision Workshops (WACVW) (pp. 1-9). IEEE. 29. ping Tian, D. (2013). A review on image feature extraction and representation techniques. International Journal of Multimedia and Ubiquitous Engineering, 8(4), 385-396. 30. Schneider, S., Taylor, G. W., & Kremer, S. (2018, May). Deep learning object detection methods for ecological camera trap data. In 2018 15th Conference on Computer and Robot Vision (CRV) (pp. 321-328). IEEE. 31. Sharma, S., Shah, D., Bhavsar, R., Jaiswal, B., & Bamniya, K. (2014, January). Automated detection of animals in context to indian scenario. In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation (pp. 334-338). IEEE. 32. Spampinato, C., Chen-Burger, Y. H., Nadarajan, G., & Fisher, R. B. (2008). Detecting, Tracking and Counting Fish in Low Quality Unconstrained Underwater Videos. VISAPP (2), 2008(514-519), 1. 33. Sung, M., Yu, S. C., & Girdhar, Y. (2017, June). Vision based real-time fish detection using convolutional neural network. In OCEANS 2017-Aberdeen (pp. 1-6). IEEE. 34. Villon, S., Chaumont, M., Subsol, G., Villéger, S., Claverie, T., & Mouillot, D. (2016, October). Coral reef fish detection and recognition in underwater videos by supervised machine learning: Comparison between Deep Learning and HOG+ SVM methods. In International Conference on Advanced Concepts for Intelligent Vision Systems (pp. 160-171). Springer, Cham. 35. Walther, D., Edgington, D. R., & Koch, C. (2004, June). Detection and tracking of objects in underwater video. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.(Vol. 1, pp. I-I). IEEE. 36. Zhang, W., Sun, J., & Tang, X. (2010). From tiger to panda: animal head detection. IEEE Transactions on Image Processing, 20(6), 1696-1708. 37. Zhang, Z., He, Z., Cao, G., & Cao, W. (2016). Animal detection from highly cluttered natural scenes using spatiotemporal object region proposals and patch verification. IEEE Transactions on Multimedia, 18(10), 2079-2092. 38. Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems. 39. Zhuang, P., Xing, L., Liu, Y., Guo, S., & Qiao, Y. (2017). Marine Animal Detection and Recognition with Advanced Deep Learning Models. In CLEF (Working Notes). |