帳號:guest(3.144.254.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾旻佑
作者(外文):Chung, Min-Yu
論文名稱(中文):考量製程彈性與拆批問題之多資源限制排程應用於CNC加工產業
論文名稱(外文):Multi-resource Constrained Scheduling Considering Process Plan Flexibility and Lot Streaming for CNC Machining Industry
指導教授(中文):陳建良
指導教授(外文):Chen, James C.
口試委員(中文):陳子立
陳子立
口試委員(外文):Chen, Tzu-Li
Chen, Tzu-Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034540
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:172
中文關鍵詞:零工式生產排程問題多目標排程問題製程彈性多資源限制批量調度CNC加工產業
外文關鍵詞:flexible job shop scheduling problemmulti-objective scheduling problemprocess plan flexibilitymultiple resource constraintslot streamingCNC machining industry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:358
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
CNC加工排程問題是一種典型的彈性零工式生產排程問題(FJSSP),其複雜度已被證明為NP-hard。儘管有很多關於FJSSP的研究,但CNC加工排程問題的實際應用還沒有得到太多關注,相關論文也很有限。實際上,CNC加工產業存在幾個關鍵特徵,可能對排程問題產生很大影響,分別是製程彈性、多資源限制和批量調度。製程彈性允許產品通過其任何可替代製程完成,可理解為產品能透過不同順序的不同工序步驟完成生產。另外還應注意,由於不同機台的加工能力不同,導致不同製程的良率可能彼此不同。此時製程規劃和排程的整合變得致關重要。除了機台之外,夾治具也是用於生產產品的主要資源。雖然在產能規劃階段期間夾治具的數量處於足夠的水平,但由於若干產品同時需要相同的夾治具,規劃人員有時會遇到夾治具短缺。因此,需要適當的排程來避免這種情況。而批量調度的用意為讓作業(批)可以被分成許多較小的作業(子批),使得相同作業的前後工序步驟因分成多批而可以重疊,通常用於提高生產效率。
本研究旨在建立一個整合訂單資訊、在製品資訊(WIP)和上述CNC加工產業特徵且基於混合式多目標基因演算法(HMOGA)結合局部搜索的排程系統。HMOGA的最佳參數組合由實驗設計決定,且通過計算分析來檢驗局部搜索的有效性。最後採用公司的實際數據來驗證所提出的方法。結果表明,本研究開發的排程系統在現實世界的CNC加工問題中表現良好。
CNC machining scheduling problem is a classical flexible job shop scheduling problem (FJSSP) which has been proven to be NP-hard. Although lots of research works on FJSSP, applications for real-world CNC machining scheduling problem have not received much attention and the related papers are limited. In reality, several critical characteristics exist in CNC machining industry and can cause great impact on the scheduling problem, which are process plan flexibility, multiple resource constraints and lot streaming respectively. Process plan flexibility allows a product to be finished by any of its alternative process plans with different required operations under different processing sequence. It should also be noticed that yield rates of process plans are possibly different to each other because of the different processing capability of machines. So, the integration of process planning and scheduling becomes important. On top of machine, fixture is also a main resource used to produce the products. Even though the quantity of fixture is at a sufficient level during capacity planning stage, planners sometimes encounter fixture shortage owing to several products requiring the same fixture at the same time. Consequently, a proper scheduling is needed to avoid this situation. And lot streaming describes a job (lot) can be split into a number of smaller jobs (sublots) so that successive operations of the same job can be overlapped, and is often used to enhance production efficiency.
This research aims to establish a scheduling system integrating order information, work in process (WIP) information and the abovementioned characteristics for CNC machining scheduling industry based on a hybrid multi-objective genetic algorithm (HMOGA) combined with local search. The best parameter combination of HMOGA is decided by design of experiment, and the effectiveness of local search is checked through computational analysis. Lastly, real data from a company will be adopted to verify the proposed method. The result shows that the scheduling system developed by this research performs well in the real-world CNC machining scheduling problem.
摘要…………………………………………………………………………………………………………………………..I
Abstract…………………………………………………………………………………………………………………….II
致謝…………………………………………………………………………………………………………………........IV
Contents…………………………………………………………………………………………………………………..VI
List of Tables…………………………………………………………………………………………………………….IX
List of Figures……………………………………………………………………………………………………………X
Chapter 1: Introduction…………………………………………………………………………………………….1
1.1 Background and Motivation………………………………………………………………………………..1
1.2 Research Objective………………………………………………………………………………………………6
1.3 Research Method………………………………………………………………………………………………..7
1.4 Organization of Thesis…………………………………………………………………………………………8
Chapter 2: Literature Review…………………………………………………………………………………..10
2.1 Scheduling in CNC Machining Industry………………………………………………………………10
2.2 Framework of Scheduling System………………………………………………………………………14
2.3 Integration of Process Planning and Scheduling…………………………………………………17
2.4 Scheduling with Multiple Resource Constraints…………………………………………………20
2.5 Lot Streaming……………………………………………………………………………………………………23
2.6 Multi-objective Evolutionary Algorithm for Scheduling Problem……………………….25
2.7 Contribution of the Research…………………………………………………………………………….29
Chapter 3: Problem Definition…………………………………………………………………………………36
3.1 Problem Statement……………………………………………………………………………………………36
3.2 Notations and Assumptions………………………………………………………………………………42
3.3 Mathematical Formulation………………………………………………………………………………..46
Chapter 4: Methodology…………………………………………………………………………………………51
4.1 Scheduling System Framework………………………………………………………………………….51
4.2 Fundamental Database and Data Pre-treatment for scheduling…………………………52
4.2.1 Database used in the Scheduling System………………………………………………………..52
4.2.2 Data Pre-treatment………………………………………………………………………………………..54
4.3 Process Plan Treatment Module (PPTM)……………………………………………………………57
4.4 Order Priority Module (OPM)……………………………………………………………………………59
4.5 Hybrid Multi-objective Genetic Algorithm (HMOGA)…………………………………………60
4.5.1 Framework of the Proposed HMOGA……………………………………………………………..62
4.5.2 Encoding and Decoding Schema…………………………………………………………………….63
4.5.3 Initial Population Generation………………………………………………………………………….69
4.5.4 Fitness Evaluation…………………………………………………………………………………………..76
4.5.5 Selection ………………………………………………………………………………………………………..76
4.5.6 Crossover……………………………………………………………………………………………………….77
4.5.7 Mutation………………………………………………………………………………………………………..86
4.5.8 Local Search……………………………………………………………………………………………………91
4.5.9 Next Population Generation……………………………………………………………………………94
Chapter 5: Computational Analysis ……………………………………………………………………….103
5.1 Execution Environment of the Scheduling System……………………………………………103
5.2 Convergent Situation of HMOGA…………………………………………………………………….104
5.3 Design of Experiment for HMOGA Parameter Setting………………………………………109
5.3.1 Significant Parameters for HMOGA……………………………………………………………….109
5.3.2 Best Parameter Combination for HMOGA…………………………………………………….113
5.3.3 Solutions under the Best Parameter Combination Setting…………………………….115
5.4 Performance Comparison for Different Algorithm……………………………………………125
5.5 Analysis of Objective Values at Different Maximum Sublot Quantity……………….128
Chapter 6: Conclusion……………………………………………………………………………………………130
Reference………………………………………………………………………………………………………………133
Appendix………………………………………………………………………………………………………………147
Appendix A: Real Case Dataset for Computational Analysis…………………………………..147
Appendix B: Experimental Observation for ANOVA……………………………………………….159
Appendix C: Test Case used to Compare Different Algorithms……………………………….168
1. Abedinnia, H., Glock, C. H., & Schneider, M. D. (2017). Machine scheduling in production: a content analysis. Applied Mathematical Modelling, 50, 279-299.
2. Akturk, M. S., & Ilhan, T. (2011). Single CNC machine scheduling with controllable processing times to minimize total weighted tardiness. Computers & Operations Research, 38(4), 771-781.
3. Asokan, P., Jerald, J., Arunachalam, S., & Page, T. (2008). Application of adaptive genetic algorithm and particle swarm optimisation in scheduling of jobs and AS/RS in FMS. International Journal of Manufacturing Research, 3(4), 393-405.
4. Ben Ali, M., Sassi, M., Gossa, M., & Harrath, Y. (2011). Simultaneous scheduling of production and maintenance tasks in the job shop. International Journal of Production Research, 49(13), 3891-3918.
5. Boukouvala, F., Misener, R., & Floudas, C. A. (2016). Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. European Journal of Operational Research, 252(3), 701-727.
6. Burnwal, S., & Deb, S. (2013). Scheduling optimization of flexible manufacturing system using cuckoo search-based approach. The International Journal of Advanced Manufacturing Technology, 64(5-8), 951-959..
7. Calleja, G., & Pastor, R. (2014). A dispatching algorithm for flexible job-shop scheduling with transfer batches: an industrial application. Production Planning & Control, 25(2), 93-109.
8. Candan, G., & Yazgan, H. R. (2015). Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem. International Journal of Production Research, 53(3), 897-915
9. Čapek, R., Šůcha, P., & Hanzálek, Z. (2012). Production scheduling with alternative process plans. European Journal of Operational Research, 217(2), 300-311.\
10. Chan, F. T., & Swarnkar, R. (2006). Ant colony optimization approach to a fuzzy goal programming model for a machine tool selection and operation allocation problem in an FMS. Robotics and Computer-Integrated Manufacturing, 22(4), 353-362.
11. Chan, F. T. S., Wong, T. C., & Chan, L. Y. (2006). Flexible job-shop scheduling problem under resource constraints. International Journal of Production Research, 44(11), 2071-2089.
12. Chen, J. C., Chen, C. W., Lin, C. J., & Rau, H. (2005). Capacity planning with capability for multiple semiconductor manufacturing fabs. Computers & Industrial Engineering, 48(4), 709-732.
13. Chen, J. C., Chen, T. L., & Harianto, H. (2017). Capacity planning for packaging industry. Journal of manufacturing systems, 42, 153-169.
14. Chen, J. C., Chen, T. L., Pratama, B. R., & Tu, Q. F. (2016). Capacity planning in thin film transistor–liquid crystal display cell process. Journal of Manufacturing Systems, 39, 63-78.
15. Chen, J. C., Chen, T. L., Pratama, B. R., & Tu, Q. F. (2018). Capacity planning with ant colony optimization for TFT-LCD array manufacturing. Journal of Intelligent Manufacturing, 29(8), 1695-1713.
16. Chen, Q., & Khoshnevis, B. (1993). Scheduling with flexible process plan. Production Planning & Control, 4(4), 333-343.
17. Chen, T. L., Chen, J. C., Hung, H. C., & Ou, T. C. (2018, April). Solving the loading balance problem in the photolithography area. Paper presented at the International Symposium on Business and Management, Osaka, Japan.
18. Chen, Y. J. (2018). Capacity planning for precision machinery industry. (Master), National Tsing Hua University, Hsinchu, Taiwan.
19. Coello, C. A. C. C., & Pulido, G. T. (2001, March). A micro-genetic algorithm for multiobjective optimization. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 126-140). Springer, Berlin, Heidelberg.
20. Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001, July). PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation (pp. 283-290). Morgan Kaufmann Publishers Inc..
21. Corne, D. W., Knowles, J. D., & Oates, M. J. (2000, September). The Pareto envelope-based selection algorithm for multiobjective optimization. In International conference on parallel problem solving from nature (pp. 839-848). Springer, Berlin, Heidelberg.
22. Das, S. R., & Canel, C. (2005). An algorithm for scheduling batches of parts in a multi-cell flexible manufacturing system. International Journal of Production Economics, 97(3), 247-262.
23. Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601.
24. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
25. Defersha, F. M., & Chen, M. (2009, August). A coarse-grain parallel genetic algorithm for flexible job-shop scheduling with lot streaming. In Computational Science and Engineering, 2009. CSE'09. International Conference on (Vol. 1, pp. 201-208). IEEE.
26. Defersha, F. M., & Chen, M. (2012). Jobshop lot streaming with routing flexibility, sequence-dependent setups, machine release dates and lag time. International Journal of Production Research, 50(8), 2331-2352.
27. Fanti, M. P., Rotunno, G., Stecco, G., Ukovich, W., & Mininel, S. (2015). An integrated system for production scheduling in steelmaking and casting plants. IEEE Transactions on Automation Science and Engineering, 13(2), 1112-1128.
28. Fonseca, C. M., & Fleming, P. J. (1993, May). Multiobjective genetic algorithms. In Genetic algorithms for control systems engineering, IEE colloquium on (pp. 6-1). IET.
29. Gao, L., & Pan, Q. K. (2016). A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem. Information Sciences, 372, 655-676.
30. Gaudreault, J., Frayret, J. M., Rousseau, A., & D’Amours, S. (2011). Combined planning and scheduling in a divergent production system with co-production: a case study in the lumber industry. Computers & Operations Research, 38(9), 1238-1250.
31. Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: state-of-the-art survey. Journal of Intelligent Manufacturing, 25(5), 849-866.
32. Graves, S. C. (1981). A review of production scheduling. Operations research, 29(4), 646-675.
33. Guo, Y. W., Li, W. D., Mileham, A. R., & Owen, G. W. (2009). Applications of particle swarm optimisation in integrated process planning and scheduling. Robotics and Computer-Integrated Manufacturing, 25(2), 280-288.
34. Gurel, S., & Selim Akturk, M. (2008). Scheduling preventive maintenance on a single CNC machine. International Journal of Production Research, 46(24), 6797-6821.
35. Hadidi, L. A., Al-Turki, U. M., & Rahim, M. A. (2012). Joint job scheduling and preventive maintenance on a single machine. International Journal of Operational Research, 13(2), 174-184.
36. Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal design. Structural optimization, 4(2), 99-107.
37. Hammad, A. W. A., Akbarnezhad, A., & Rey, D. (2016). A multi-objective mixed integer nonlinear programming model for construction site layout planning to minimise noise pollution and transport costs. Automation in construction, 61, 73-85.
38. Huang, X. W., Zhao, X. Y., & Ma, X. L. (2014). An improved genetic algorithm for job-shop scheduling problem with process sequence flexibility. International Journal of Simulation Modelling, 13(4), 510-522.
39. Ishibuchi, H., Hitotsuyanagi, Y., Wakamatsu, Y., & Nojima, Y. (2010, September). How to choose solutions for local search in multiobjective combinatorial memetic algorithms. In International Conference on Parallel Problem Solving from Nature (pp. 516-525). Springer, Berlin, Heidelberg.
40. Jain, A., Jain, P. K., & Singh, I. P. (2006). An integrated scheme for process planning and scheduling in FMS. The International Journal of Advanced Manufacturing Technology, 30(11-12), 1111-1118.
41. Jerald, J., Asokan, P., Prabaharan, G., & Saravanan, R. (2005). Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm. The International Journal of Advanced Manufacturing Technology, 25(9-10), 964-971.
42. Jerald, J., Asokan, P., Saravanan, R., & Rani, A. D. C. (2006). Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm. The International Journal of Advanced Manufacturing Technology, 29(5-6), 584-589.
43. Keddari, N., Mebarki, N., Shahzad, A., & Sari, Z. (2018). Solving an Integration Process Planning and Scheduling in a Flexible Job Shop Using a Hybrid Approach. In Computational Intelligence and Its Applications: 6th IFIP TC 5 International Conference, CIIA 2018, Oran, Algeria, May 8-10, 2018, Proceedings 6 (pp. 387-398). Springer International Publishing.
44. Knowles, J. D., & Corne, D. W. (2000). Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary computation, 8(2), 149-172.
45. Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007.
46. Lee, Y. H., Jeong, C. S., & Moon, C. (2002). Advanced planning and scheduling with outsourcing in manufacturing supply chain. Computers & Industrial Engineering, 43(1-2), 351-374.
47. Lei, D., & Guo, X. (2015). An effective neighborhood search for scheduling in dual-resource constrained interval job shop with environmental objective. International Journal of Production Economics, 159, 296-303.
48. Li, W. D., & McMahon, C. A. (2007). A simulated annealing-based optimization approach for integrated process planning and scheduling. International Journal of Computer Integrated Manufacturing, 20(1), 80-95.
49. Li, X. Y., Shao, X. Y., & Gao, L. (2008). Optimization of flexible process planning by genetic programming. The International Journal of Advanced Manufacturing Technology, 38(1-2), 143-153.
50. Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272.
51. Lu, H., & Yen, G. G. (2003). Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE transactions on evolutionary computation, 7(4), 325-343.
52. Lu, Y., Wang, S., Sun, Y., & Yan, C. (2015). Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming. Applied Energy, 147, 49-58.
53. Meng, T., & Pan, Q. K. (2018, August). An enhanced migrating birds optimization for the flexible job shop scheduling problem with lot streaming. In International Conference on Intelligent Computing (pp. 769-779). Springer, Cham.
54. Morad, N., & Zalzala, A. M. S. (1999). Genetic algorithms in integrated process planning and scheduling. Journal of Intelligent Manufacturing, 10(2), 169-179.
55. Motaghedi-Larijani, A., Sabri-Laghaie, K., & Heydari, M. (2010). Solving flexible job shop scheduling with multi objective approach. International Journal of Industrial Engineering & Production Research.
56. Murata, T., & Ishibuchi, H. (1995, November). MOGA: multi-objective genetic algorithms. In Evolutionary Computation, 1995., IEEE International Conference on (Vol. 1, p. 289). IEEE.
57. Nagamani, M., Chandrasekaran, E., & Saravanan, D. (2013). Pareto-based hybrid multi-objective evolutionary algorithm for flexible job-shop scheduling problem. IOSR Journal of Mathematics, 9, 35-45
58. Nagarjuna, N., Mahesh, O., & Rajagopal, K. (2006). A heuristic based on multi-stage programming approach for machine-loading problem in a flexible manufacturing system. Robotics and Computer-Integrated Manufacturing, 22(4), 342-352.
59. Next Generation Technologies. (2019). Computer numerical control (CNC) machine market size & share report by type (lathe, milling, laser, grinding, welding, winding), by end use (industrial, power & energy, automotive, aerospace & defense), and segment forecasts, 2019 – 2025 (Report No. GVR-2-68038-077-4). Retrieved from Grand View Research Website: https://www.grandviewresearch.com/industry-analysis/computer-numerical-controls-cnc-market/methodology
60. Nonaka, Y., Erdős, G., Kis, T., Nakano, T., & Váncza, J. (2012). Scheduling with alternative routings in CNC workshops. CIRP Annals-Manufacturing Technology, 61(1), 449-454.
61. Rajabinasab, A., & Mansour, S. (2011). Dynamic flexible job shop scheduling with alternative process plans: an agent-based approach. The International Journal of Advanced Manufacturing Technology, 54(9-12), 1091-1107.
62. Reiter, S. (1966). A system for managing job-shop production. The Journal of Business, 39(3), 371-393.
63. rey Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence (Vol. 1, pp. 82-87).
64. Rohaninejad, M., Kheirkhah, A., & Fattahi, P. (2015). Simultaneous lot-sizing and scheduling in flexible job shop problems. The International Journal of Advanced Manufacturing Technology, 78(1-4), 1-18.
65. Rohaninejad, M., Kheirkhah, A., Fattahi, P., & Vahedi-Nouri, B. (2015). A hybrid multi-objective genetic algorithm based on the ELECTRE method for a capacitated flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 77(1-4), 51-66.
66. Sankar, S. S., Ponnanbalam, S. G., & Rajendran, C. (2003). A multiobjective genetic algorithm for scheduling a flexible manufacturing system. The International Journal of Advanced Manufacturing Technology, 22(3-4), 229-236.
67. Sarker, R., Liang, K. H., & Newton, C. (2002). A new multiobjective evolutionary algorithm. European Journal of Operational Research, 140(1), 12-23.
68. Saygin, C., & Kilic, S. E. (1999). Integrating flexible process plans with scheduling in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 15(4), 268-280.
69. Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985. Lawrence Erlbaum Associates. Inc., Publishers.
70. Shao, X., Li, X., Gao, L., & Zhang, C. (2009). Integration of process planning and scheduling—a modified genetic algorithm-based approach. Computers & Operations Research, 36(6), 2082-2096.
71. Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
72. Tang, L., Zhao, Y., & Liu, J. (2013). An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Transactions on Evolutionary Computation, 18(2), 209-225.
73. Wang, D., Grunder, O., & Moudni, A. E. (2014). Using genetic algorithm for lot sizing and scheduling problem with arbitrary job volumes and distinct job due date considerations. International Journal of Systems Science, 45(8), 1694-1707.
74. Wang, H., Jiang, Z., Wang, Y., Zhang, H., & Wang, Y. (2018). A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization. Journal of Cleaner Production, 188, 575-588.
75. Wang, J., Zhang, Y. F., Nee, A. Y. C., Wang, Y. F., & Fuh, J. Y. H. (2009). Reducing tardy jobs by integrating process planning and scheduling functions. International Journal of Production Research, 47(21), 6069-6084.
76. Wong, T. C., Chan, F. T., & Chan, L. Y. (2009). A resource-constrained assembly job shop scheduling problem with lot streaming technique. Computers & Industrial Engineering, 57(3), 983-995.
77. Wong, T. C., & Ngan, S. C. (2013). A comparison of hybrid genetic algorithm and hybrid particle swarm optimization to minimize makespan for assembly job shop. Applied Soft Computing, 13(3), 1391-1399.
78. Wu, R., Li, Y., Guo, S., & Xu, W. (2018). Solving the dual-resource constrained flexible job shop scheduling problem with learning effect by a hybrid genetic algorithm. Advances in Mechanical Engineering, 10(10), 1687814018804096.
79. Yen, G. G., & Lu, H. (2003). Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation. IEEE Transactions on Evolutionary Computation, 7(3), 253-274.
80. Yin, L., Li, X., Gao, L., Lu, C., & Zhang, Z. (2017). A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem. Sustainable Computing: Informatics and Systems, 13, 15-30.
81. Yogeswaran, M., Ponnambalam, S. G., & Tiwari, M. K. (2009). An efficient hybrid evolutionary heuristic using genetic algorithm and simulated annealing algorithm to solve machine loading problem in FMS. International Journal of Production Research, 47(19), 5421-5448.
82. Younus, M., Peiyong, C., Hu, L., & Yuqing, F. (2010, June). MES development and significant applications in manufacturing-A review. In Education Technology and Computer (ICETC), 2010 2nd International Conference on (Vol. 5, pp. V5-97). IEEE.
83. Yu, M., Zhang, Y., Chen, K., & Zhang, D. (2015). Integration of process planning and scheduling using a hybrid GA/PSO algorithm. The International Journal of Advanced Manufacturing Technology, 78(1-4), 583-592.
84. Yuan, Y., & Xu, H. (2013). Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Transactions on Automation Science and Engineering, 12(1), 336-353.
85. Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375.
86. Zheng, X. L., & Wang, L. (2016). A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem. International Journal of Production Research, 54(18), 5554-5566.
87. Zhong, Y., Li, J. M., & Zhu, S. Z. (2017). Research on the multi-objective optimized scheduling of the flexible job-shop considering multi-resource allocation. International Journal of Simulation Modelling, 16(3), 517-526.
88. Zhou, L., Chen, Z., & Chen, S. (2018). An effective detailed operation scheduling in MES based on hybrid genetic algorithm. Journal of Intelligent Manufacturing, 29(1), 135-153.
89. Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 103.
90. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE transactions on Evolutionary Computation, 3(4), 257-271.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *