|
1. Abedinnia, H., Glock, C. H., & Schneider, M. D. (2017). Machine scheduling in production: a content analysis. Applied Mathematical Modelling, 50, 279-299. 2. Akturk, M. S., & Ilhan, T. (2011). Single CNC machine scheduling with controllable processing times to minimize total weighted tardiness. Computers & Operations Research, 38(4), 771-781. 3. Asokan, P., Jerald, J., Arunachalam, S., & Page, T. (2008). Application of adaptive genetic algorithm and particle swarm optimisation in scheduling of jobs and AS/RS in FMS. International Journal of Manufacturing Research, 3(4), 393-405. 4. Ben Ali, M., Sassi, M., Gossa, M., & Harrath, Y. (2011). Simultaneous scheduling of production and maintenance tasks in the job shop. International Journal of Production Research, 49(13), 3891-3918. 5. Boukouvala, F., Misener, R., & Floudas, C. A. (2016). Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. European Journal of Operational Research, 252(3), 701-727. 6. Burnwal, S., & Deb, S. (2013). Scheduling optimization of flexible manufacturing system using cuckoo search-based approach. The International Journal of Advanced Manufacturing Technology, 64(5-8), 951-959.. 7. Calleja, G., & Pastor, R. (2014). A dispatching algorithm for flexible job-shop scheduling with transfer batches: an industrial application. Production Planning & Control, 25(2), 93-109. 8. Candan, G., & Yazgan, H. R. (2015). Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem. International Journal of Production Research, 53(3), 897-915 9. Čapek, R., Šůcha, P., & Hanzálek, Z. (2012). Production scheduling with alternative process plans. European Journal of Operational Research, 217(2), 300-311.\ 10. Chan, F. T., & Swarnkar, R. (2006). Ant colony optimization approach to a fuzzy goal programming model for a machine tool selection and operation allocation problem in an FMS. Robotics and Computer-Integrated Manufacturing, 22(4), 353-362. 11. Chan, F. T. S., Wong, T. C., & Chan, L. Y. (2006). Flexible job-shop scheduling problem under resource constraints. International Journal of Production Research, 44(11), 2071-2089. 12. Chen, J. C., Chen, C. W., Lin, C. J., & Rau, H. (2005). Capacity planning with capability for multiple semiconductor manufacturing fabs. Computers & Industrial Engineering, 48(4), 709-732. 13. Chen, J. C., Chen, T. L., & Harianto, H. (2017). Capacity planning for packaging industry. Journal of manufacturing systems, 42, 153-169. 14. Chen, J. C., Chen, T. L., Pratama, B. R., & Tu, Q. F. (2016). Capacity planning in thin film transistor–liquid crystal display cell process. Journal of Manufacturing Systems, 39, 63-78. 15. Chen, J. C., Chen, T. L., Pratama, B. R., & Tu, Q. F. (2018). Capacity planning with ant colony optimization for TFT-LCD array manufacturing. Journal of Intelligent Manufacturing, 29(8), 1695-1713. 16. Chen, Q., & Khoshnevis, B. (1993). Scheduling with flexible process plan. Production Planning & Control, 4(4), 333-343. 17. Chen, T. L., Chen, J. C., Hung, H. C., & Ou, T. C. (2018, April). Solving the loading balance problem in the photolithography area. Paper presented at the International Symposium on Business and Management, Osaka, Japan. 18. Chen, Y. J. (2018). Capacity planning for precision machinery industry. (Master), National Tsing Hua University, Hsinchu, Taiwan. 19. Coello, C. A. C. C., & Pulido, G. T. (2001, March). A micro-genetic algorithm for multiobjective optimization. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 126-140). Springer, Berlin, Heidelberg. 20. Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J. (2001, July). PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation (pp. 283-290). Morgan Kaufmann Publishers Inc.. 21. Corne, D. W., Knowles, J. D., & Oates, M. J. (2000, September). The Pareto envelope-based selection algorithm for multiobjective optimization. In International conference on parallel problem solving from nature (pp. 839-848). Springer, Berlin, Heidelberg. 22. Das, S. R., & Canel, C. (2005). An algorithm for scheduling batches of parts in a multi-cell flexible manufacturing system. International Journal of Production Economics, 97(3), 247-262. 23. Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601. 24. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. 25. Defersha, F. M., & Chen, M. (2009, August). A coarse-grain parallel genetic algorithm for flexible job-shop scheduling with lot streaming. In Computational Science and Engineering, 2009. CSE'09. International Conference on (Vol. 1, pp. 201-208). IEEE. 26. Defersha, F. M., & Chen, M. (2012). Jobshop lot streaming with routing flexibility, sequence-dependent setups, machine release dates and lag time. International Journal of Production Research, 50(8), 2331-2352. 27. Fanti, M. P., Rotunno, G., Stecco, G., Ukovich, W., & Mininel, S. (2015). An integrated system for production scheduling in steelmaking and casting plants. IEEE Transactions on Automation Science and Engineering, 13(2), 1112-1128. 28. Fonseca, C. M., & Fleming, P. J. (1993, May). Multiobjective genetic algorithms. In Genetic algorithms for control systems engineering, IEE colloquium on (pp. 6-1). IET. 29. Gao, L., & Pan, Q. K. (2016). A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem. Information Sciences, 372, 655-676. 30. Gaudreault, J., Frayret, J. M., Rousseau, A., & D’Amours, S. (2011). Combined planning and scheduling in a divergent production system with co-production: a case study in the lumber industry. Computers & Operations Research, 38(9), 1238-1250. 31. Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: state-of-the-art survey. Journal of Intelligent Manufacturing, 25(5), 849-866. 32. Graves, S. C. (1981). A review of production scheduling. Operations research, 29(4), 646-675. 33. Guo, Y. W., Li, W. D., Mileham, A. R., & Owen, G. W. (2009). Applications of particle swarm optimisation in integrated process planning and scheduling. Robotics and Computer-Integrated Manufacturing, 25(2), 280-288. 34. Gurel, S., & Selim Akturk, M. (2008). Scheduling preventive maintenance on a single CNC machine. International Journal of Production Research, 46(24), 6797-6821. 35. Hadidi, L. A., Al-Turki, U. M., & Rahim, M. A. (2012). Joint job scheduling and preventive maintenance on a single machine. International Journal of Operational Research, 13(2), 174-184. 36. Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal design. Structural optimization, 4(2), 99-107. 37. Hammad, A. W. A., Akbarnezhad, A., & Rey, D. (2016). A multi-objective mixed integer nonlinear programming model for construction site layout planning to minimise noise pollution and transport costs. Automation in construction, 61, 73-85. 38. Huang, X. W., Zhao, X. Y., & Ma, X. L. (2014). An improved genetic algorithm for job-shop scheduling problem with process sequence flexibility. International Journal of Simulation Modelling, 13(4), 510-522. 39. Ishibuchi, H., Hitotsuyanagi, Y., Wakamatsu, Y., & Nojima, Y. (2010, September). How to choose solutions for local search in multiobjective combinatorial memetic algorithms. In International Conference on Parallel Problem Solving from Nature (pp. 516-525). Springer, Berlin, Heidelberg. 40. Jain, A., Jain, P. K., & Singh, I. P. (2006). An integrated scheme for process planning and scheduling in FMS. The International Journal of Advanced Manufacturing Technology, 30(11-12), 1111-1118. 41. Jerald, J., Asokan, P., Prabaharan, G., & Saravanan, R. (2005). Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm. The International Journal of Advanced Manufacturing Technology, 25(9-10), 964-971. 42. Jerald, J., Asokan, P., Saravanan, R., & Rani, A. D. C. (2006). Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm. The International Journal of Advanced Manufacturing Technology, 29(5-6), 584-589. 43. Keddari, N., Mebarki, N., Shahzad, A., & Sari, Z. (2018). Solving an Integration Process Planning and Scheduling in a Flexible Job Shop Using a Hybrid Approach. In Computational Intelligence and Its Applications: 6th IFIP TC 5 International Conference, CIIA 2018, Oran, Algeria, May 8-10, 2018, Proceedings 6 (pp. 387-398). Springer International Publishing. 44. Knowles, J. D., & Corne, D. W. (2000). Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary computation, 8(2), 149-172. 45. Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007. 46. Lee, Y. H., Jeong, C. S., & Moon, C. (2002). Advanced planning and scheduling with outsourcing in manufacturing supply chain. Computers & Industrial Engineering, 43(1-2), 351-374. 47. Lei, D., & Guo, X. (2015). An effective neighborhood search for scheduling in dual-resource constrained interval job shop with environmental objective. International Journal of Production Economics, 159, 296-303. 48. Li, W. D., & McMahon, C. A. (2007). A simulated annealing-based optimization approach for integrated process planning and scheduling. International Journal of Computer Integrated Manufacturing, 20(1), 80-95. 49. Li, X. Y., Shao, X. Y., & Gao, L. (2008). Optimization of flexible process planning by genetic programming. The International Journal of Advanced Manufacturing Technology, 38(1-2), 143-153. 50. Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272. 51. Lu, H., & Yen, G. G. (2003). Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE transactions on evolutionary computation, 7(4), 325-343. 52. Lu, Y., Wang, S., Sun, Y., & Yan, C. (2015). Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming. Applied Energy, 147, 49-58. 53. Meng, T., & Pan, Q. K. (2018, August). An enhanced migrating birds optimization for the flexible job shop scheduling problem with lot streaming. In International Conference on Intelligent Computing (pp. 769-779). Springer, Cham. 54. Morad, N., & Zalzala, A. M. S. (1999). Genetic algorithms in integrated process planning and scheduling. Journal of Intelligent Manufacturing, 10(2), 169-179. 55. Motaghedi-Larijani, A., Sabri-Laghaie, K., & Heydari, M. (2010). Solving flexible job shop scheduling with multi objective approach. International Journal of Industrial Engineering & Production Research. 56. Murata, T., & Ishibuchi, H. (1995, November). MOGA: multi-objective genetic algorithms. In Evolutionary Computation, 1995., IEEE International Conference on (Vol. 1, p. 289). IEEE. 57. Nagamani, M., Chandrasekaran, E., & Saravanan, D. (2013). Pareto-based hybrid multi-objective evolutionary algorithm for flexible job-shop scheduling problem. IOSR Journal of Mathematics, 9, 35-45 58. Nagarjuna, N., Mahesh, O., & Rajagopal, K. (2006). A heuristic based on multi-stage programming approach for machine-loading problem in a flexible manufacturing system. Robotics and Computer-Integrated Manufacturing, 22(4), 342-352. 59. Next Generation Technologies. (2019). Computer numerical control (CNC) machine market size & share report by type (lathe, milling, laser, grinding, welding, winding), by end use (industrial, power & energy, automotive, aerospace & defense), and segment forecasts, 2019 – 2025 (Report No. GVR-2-68038-077-4). Retrieved from Grand View Research Website: https://www.grandviewresearch.com/industry-analysis/computer-numerical-controls-cnc-market/methodology 60. Nonaka, Y., Erdős, G., Kis, T., Nakano, T., & Váncza, J. (2012). Scheduling with alternative routings in CNC workshops. CIRP Annals-Manufacturing Technology, 61(1), 449-454. 61. Rajabinasab, A., & Mansour, S. (2011). Dynamic flexible job shop scheduling with alternative process plans: an agent-based approach. The International Journal of Advanced Manufacturing Technology, 54(9-12), 1091-1107. 62. Reiter, S. (1966). A system for managing job-shop production. The Journal of Business, 39(3), 371-393. 63. rey Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence (Vol. 1, pp. 82-87). 64. Rohaninejad, M., Kheirkhah, A., & Fattahi, P. (2015). Simultaneous lot-sizing and scheduling in flexible job shop problems. The International Journal of Advanced Manufacturing Technology, 78(1-4), 1-18. 65. Rohaninejad, M., Kheirkhah, A., Fattahi, P., & Vahedi-Nouri, B. (2015). A hybrid multi-objective genetic algorithm based on the ELECTRE method for a capacitated flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 77(1-4), 51-66. 66. Sankar, S. S., Ponnanbalam, S. G., & Rajendran, C. (2003). A multiobjective genetic algorithm for scheduling a flexible manufacturing system. The International Journal of Advanced Manufacturing Technology, 22(3-4), 229-236. 67. Sarker, R., Liang, K. H., & Newton, C. (2002). A new multiobjective evolutionary algorithm. European Journal of Operational Research, 140(1), 12-23. 68. Saygin, C., & Kilic, S. E. (1999). Integrating flexible process plans with scheduling in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 15(4), 268-280. 69. Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985. Lawrence Erlbaum Associates. Inc., Publishers. 70. Shao, X., Li, X., Gao, L., & Zhang, C. (2009). Integration of process planning and scheduling—a modified genetic algorithm-based approach. Computers & Operations Research, 36(6), 2082-2096. 71. Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248. 72. Tang, L., Zhao, Y., & Liu, J. (2013). An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Transactions on Evolutionary Computation, 18(2), 209-225. 73. Wang, D., Grunder, O., & Moudni, A. E. (2014). Using genetic algorithm for lot sizing and scheduling problem with arbitrary job volumes and distinct job due date considerations. International Journal of Systems Science, 45(8), 1694-1707. 74. Wang, H., Jiang, Z., Wang, Y., Zhang, H., & Wang, Y. (2018). A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization. Journal of Cleaner Production, 188, 575-588. 75. Wang, J., Zhang, Y. F., Nee, A. Y. C., Wang, Y. F., & Fuh, J. Y. H. (2009). Reducing tardy jobs by integrating process planning and scheduling functions. International Journal of Production Research, 47(21), 6069-6084. 76. Wong, T. C., Chan, F. T., & Chan, L. Y. (2009). A resource-constrained assembly job shop scheduling problem with lot streaming technique. Computers & Industrial Engineering, 57(3), 983-995. 77. Wong, T. C., & Ngan, S. C. (2013). A comparison of hybrid genetic algorithm and hybrid particle swarm optimization to minimize makespan for assembly job shop. Applied Soft Computing, 13(3), 1391-1399. 78. Wu, R., Li, Y., Guo, S., & Xu, W. (2018). Solving the dual-resource constrained flexible job shop scheduling problem with learning effect by a hybrid genetic algorithm. Advances in Mechanical Engineering, 10(10), 1687814018804096. 79. Yen, G. G., & Lu, H. (2003). Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation. IEEE Transactions on Evolutionary Computation, 7(3), 253-274. 80. Yin, L., Li, X., Gao, L., Lu, C., & Zhang, Z. (2017). A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem. Sustainable Computing: Informatics and Systems, 13, 15-30. 81. Yogeswaran, M., Ponnambalam, S. G., & Tiwari, M. K. (2009). An efficient hybrid evolutionary heuristic using genetic algorithm and simulated annealing algorithm to solve machine loading problem in FMS. International Journal of Production Research, 47(19), 5421-5448. 82. Younus, M., Peiyong, C., Hu, L., & Yuqing, F. (2010, June). MES development and significant applications in manufacturing-A review. In Education Technology and Computer (ICETC), 2010 2nd International Conference on (Vol. 5, pp. V5-97). IEEE. 83. Yu, M., Zhang, Y., Chen, K., & Zhang, D. (2015). Integration of process planning and scheduling using a hybrid GA/PSO algorithm. The International Journal of Advanced Manufacturing Technology, 78(1-4), 583-592. 84. Yuan, Y., & Xu, H. (2013). Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Transactions on Automation Science and Engineering, 12(1), 336-353. 85. Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375. 86. Zheng, X. L., & Wang, L. (2016). A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem. International Journal of Production Research, 54(18), 5554-5566. 87. Zhong, Y., Li, J. M., & Zhu, S. Z. (2017). Research on the multi-objective optimized scheduling of the flexible job-shop considering multi-resource allocation. International Journal of Simulation Modelling, 16(3), 517-526. 88. Zhou, L., Chen, Z., & Chen, S. (2018). An effective detailed operation scheduling in MES based on hybrid genetic algorithm. Journal of Intelligent Manufacturing, 29(1), 135-153. 89. Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report, 103. 90. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE transactions on Evolutionary Computation, 3(4), 257-271.
|