帳號:guest(18.117.106.78)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭彥凱
作者(外文):PENG, YEN-KAI
論文名稱(中文):利用平行啟發式搜尋法求解考量全面裝設條件之批量排程問題
論文名稱(外文):Solving Capacitated Lot Sizing and Scheduling Problem with Comprehensive Setup Considerations by Parallel Metaheuristic Algorithms
指導教授(中文):洪一峯
指導教授(外文):Hung, Yi-Feng
口試委員(中文):吳建瑋
李雨青
口試委員(外文):Wu, Chien-Wei
Lee, Yu-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034538
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:57
中文關鍵詞:產能限制批量排程順序相依的裝設允許裝設延續至下一期允許裝設時間跨期塔布搜尋法模擬退火法平行運算
外文關鍵詞:Capacitated lot sizing and schedulingsequence-dependent setupsetup carryoversetup crossoverTabu searchsimulated annealingparallel computing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:505
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生產批量問題是製造業中十分基礎且重要的問題,在有限的產能下最小化相關生產成本,此種問題可被稱為產能限制批量排程問題(CLSP)。本研究探討考量四項重要裝設因素的CLSP,此四項因素包含:(1)裝設時間會占用產能(2)順序相依的裝設成本及時間(3)允許裝設延續至下一期,亦即,若下期第一個生產產品與本期最後一個產品相同,不需再重新裝設,以及(4)允許裝設時間跨期,亦即,一次裝設不限定於要在同一期內完成,可以跨越多期。由於此問題本就複雜度高,若同時多考量此四項裝設因素,會再大幅增加問題的難度,故目前文獻中鮮少能夠完善涵蓋此四項裝設因素。且顧及在現實生產環境中的實用性,本研究不僅考量如何正確的求解問題,更考量如何有效率的求解。
本研究將以兩種啟發式搜尋演算法求解此問題,包含塔布搜尋法以及模擬退火法。且將總體解決方案分為離散決策以及連續決策,離散決策包含每個批量生產的產品以及生產次序,連續決策則是每個批量開始以及結束的時間點。在給定一離散決策後,透過求解線性規劃問題可求得連續決策。為提升求解過程在程式中的效率,本研究提出一特殊方式來在程式中建構數學模型,鄰近解可使用現行解的數學模型進行調整,以有效運用本研究使用之線性規劃求解程式中的單形法敏感度分析。本研究也將平行運算的技術導入啟發式搜尋法,來進一步增進求解效率。
Lot sizing is an essential decision in many manufacturing environments. With the objective to minimize relevant costs within limited capacity, this problem is also called capacitated lot sizing and scheduling problem (CLSP). This study investigates CLSP with four comprehensive setup considerations, including: (1) setup times; (2) sequence-dependence for both setup costs and times; (3) setup carryover, avoiding duplicate setups of a same item in adjacent periods; and (4) setup crossover, allowing setups to run across the boundary of two adjacent periods. The complexity of CLSP has been proven to be NP-hard. Considering these four setup features simultaneously further increases the complexity of CLSP and existing study on this problem is rare. Because of the practicality in manufacturing environments, solving the problem not only correctly but also efficiently is the main focus of this study.
Two metaheuristic algorithms, Tabu search (TS) and simulated annealing (SA), are experimented in this study. An overall solution of a problem is divided into two kinds of decision: discrete decision and continuous decision. Discrete decision contains the item produced in each batch, and the sequence of epochs, which include the start and end epochs of batches and boundaries of periods. Continuous decision refers to the exactly start and end times of each batch. With a discrete decision, a linear programming (LP) model can be solved to obtain continuous decisions. To improve solution efficiency and take advantage of post-optimization techniques of the Simplex method of the LP solver used in this study, various methods are proposed to generate the LP instance of a neighborhood solution by few modifications of the LP instance of a current solution. To further improve the solution efficiency, TS and SA are both implemented with parallel computing technique.
摘要 I
Abstract II
圖目錄 V
表目錄 VII
1. 緒論 1
1.1. 問題背景及應用 1
1.2. 產能限制批量排程問題之分類 2
1.3. 產能限制批量排程問題之延伸與複雜度 2
1.4. 問題假設與求解方法 4
2. 文獻探討 6
2.1. CLSP之歷史概述及經典文獻 6
2.2. 裝設時間及成本的相關之文獻 7
2.2.1. 允許裝設延續之CLSP 7
2.2.2. 允許裝設時間跨期之CLSP 8
2.3. 啟發式搜尋演算法之相關文獻 9
2.3.1. 禁忌搜索法及CLSP之相關應用 9
2.3.2. 模擬退火法及CLSP之相關應用 9
2.4. 平行運算及生產排程相關應用 10
3. 研究方法 11
3.1. 混合整數規劃數學模型 11
3.2. 產生起始解:啟發式方法 14
3.3. 離散決策與連續決策 18
3.3.1. 離散決策與連續決策之概念 18
3.3.2. 連續決策:線性規劃數學模型 19
3.4. 探索鄰近解流程 21
3.4.1. 四種探索鄰近解方法 21
3.4.2. 確認鄰近解可行性之方法 25
3.4.3. 基於影子價格資訊之局部搜索演算法 26
3.5. 在程式中建構線性規劃數學模型方法 29
3.6. 啟發式搜尋演算法 32
3.6.1. 禁忌搜索法 32
3.6.2. 模擬退火法 34
3.7. 平行運算 37
3.7.1. 產生平行啟發式搜尋演算法之起始解方法 37
3.7.2. 平行啟發式搜尋演算法 38
4. 實驗結果與探討 40
4.1. 實驗問題產生流程 40
4.2. 實驗參數設定 42
4.3. 實驗結果分析 43
4.3.1. 建立數學模型方法對於程式求解效率之影響 43
4.3.2. 各控制變因對目標值之影響 44
4.3.3. 各方法求解效率之評估及探討 49
5. 結論與未來研究方向 53
參考文獻 54

AitZai, A., & Boudhar, M. (2013). Parallel branch-and-bound and parallel PSO algorithms for job shop scheduling problem with blocking. International Journal of Operational Research, 16(1), 14-37.
Akhshabi, M., Haddadnia, J., & Akhshabi, M. (2012). Solving flow shop scheduling problem using a parallel genetic algorithm. Procedia Technology, 1, 351-355.
Almada-Lobo, B., Klabjan, D., Antónia carravilla, M., & Oliveira, J. F. (2007). Single machine multi-product capacitated lot sizing with sequence-dependent setups. International Journal of Production Research, 45(20), 4873-4894.
Bitran, G. R., & Yanasse, H. H. (1982). Computational Complexity of the Capacitated Lot Size Problem. Management Science, 28(10), 1174-1186.
Bozejko, W., & Wodecki, M. (2002, 25-25 Sept. 2002). Solving the flow shop problem by parallel tabu search. Paper presented at the Proceedings. International Conference on Parallel Computing in Electrical Engineering.
Brüggemann, W., & Jahnke, H. (2000). The discrete lot-sizing and scheduling problem: Complexity and modification for batch availability. European Journal of Operational Research, 124(3), 511-528.
Chen, W. H., & Thizy, J. M. (1990). Analysis of relaxations for the multi-item capacitated lot-sizing problem. Annals of Operations Research, 26(1), 29-72.
Clark, A., Mahdieh, M., & Rangel, S. (2014). Production lot sizing and scheduling with non-triangular sequence-dependent setup times. International Journal of Production Research, 52(8), 2490-2503.
Clark, A. R., & Clark, S. J. (2000). Rolling-horizon lot-sizing when set-up times are sequence-dependent. International Journal of Production Research, 38(10), 2287-2307.
Coleman, B. J. (1992). Technical note: A simple model for optimizing the single machine early/tardy problem with sequence-dependent setups. Production and Operations Management, 1(2), 225-228.
Comelli, M., Gourgand, M., & Lemoine, D. (2006, 25-27 Oct. 2006). A review of tactical planning models. Paper presented at the 2006 International Conference on Service Systems and Service Management.
Copil, K., Wörbelauer, M., Meyr, H., & Tempelmeier, H. (2017). Simultaneous lotsizing and scheduling problems: a classification and review of models. OR Spectrum, 39(1), 1-64.
Defersha, F. M., & Chen, M. (2010). A parallel genetic algorithm for a flexible job-shop scheduling problem with sequence dependent setups. The International Journal of Advanced Manufacturing Technology, 49(1), 263-279.
Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling — Survey and extensions. European Journal of Operational Research, 99(2), 221-235.
Fleischmann, B. (1990). The discrete lot-sizing and scheduling problem. European Journal of Operational Research, 44(3), 337-348.
Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. Operations-Research-Spektrum, 19(1), 11-21.
Florian, M., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1980). Deterministic Production Planning: Algorithms and Complexity. Management Science, 26(7), 669-679.
Gao, J., He, G., & Wang, Y. (2009). A new parallel genetic algorithm for solving multiobjective scheduling problems subjected to special process constraint. The International Journal of Advanced Manufacturing Technology, 43(1), 151-160.
Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190-206.
Glover, F., & Laguna, M. (1997). Tabu Search: Kluwer Academic Publishers.
Gopalakrishnan, M. (2000). A modified framework for modelling set-up carryover in the capacitated lotsizing problem. International Journal of Production Research, 38(14), 3421-3424.
Gopalakrishnan, M., Ding, K., Bourjolly, J.-M., & Mohan, S. (2001). A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover. Management Science, 47(6), 851-863.
Gopalakrishnan, M., Miller, D. M., & Schmidt, C. P. (1995). A framework for modelling setup carryover in the capacitated lot sizing problem. International Journal of Production Research, 33(7), 1973-1988.
Gupta, D., & Magnusson, T. (2005). The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Computers & Operations Research, 32(4), 727-747.
Haase, K., & Kimms, A. (2000). Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities. International Journal of Production Economics, 66(2), 159-169.
Harris, F. W. (1913). How Many Parts to Make at Once. The Magazine of Management, 10(2), 135-136, 152.
Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57(1), 97-109.
Hindi, K. S. (1995). Solving the single-item, capacitated dynamic lot-sizing problem with startup and reservation costs by tabu search. Computers & Industrial Engineering, 28(4), 701-707.
Huang, P. Y. (2018). Solving Capacitated Lot Sizing and Scheduling Problem with Comprehensive Setup Considerations by Tabu Search. (Master Degree), National Tsing Hua University, Taiwan R.O.C.
Hung, Y. F., Bao, J. S., & Cheng, Y. E. (2017). Minimizing earliness and tardiness costs in scheduling jobs with time windows. Computers & Industrial Engineering, 113, 871-890.
Hung, Y. F., Chen, W. C., & Chen, J. C. (2012). Search Algorithms in the Selection of Warehouses and Transshipment Arrangements for High-End Low-Volume Products. [高價低量商品倉儲選擇及轉運調度之搜尋演算法]. Journal of Advanced Engineering, 7(2), 51-60.
Hung, Y. F., & Chien, K. L. (2000). A multi-class multi-level capacitated lot sizing model. Journal of the Operational Research Society, 51(11), 1309-1318.
James, R. J. W., & Almada-Lobo, B. (2011). Single and parallel machine capacitated lotsizing and scheduling: New iterative MIP-based neighborhood search heuristics. Computers & Operations Research, 38(12), 1816-1825.
Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review. International Journal of Production Research, 46(6), 1619-1643.
Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5), 365-378.
Karimi, B., Ghomi, S. M. T. F., & Wilson, J. M. (2006). A tabu search heuristic for solving the CLSP with backlogging and set-up carry-over. Journal of the Operational Research Society, 57(2), 140-147.
Kirkpatrick, S., Gelatt Jr, D., & P. Vecchi, M. (1983). Optimization by Simulated Annealing (Vol. 220).
Kovács, A., Brown, K. N., & Tarim, S. A. (2009). An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups. International Journal of Production Economics, 118(1), 282-291.
Lundy, M., & Mees, A. (1986). Convergence of an annealing algorithm. Mathematical Programming, 34(1), 111-124.
Mahdieh, M., Clark, A., & Bijari, M. (2018). A novel flexible model for lot sizing and scheduling with non-triangular, period overlapping and carryover setups in different machine configurations. Flexible Services and Manufacturing Journal, 30(4), 884-923.
Menezes, A. A., Clark, A., & Almada-Lobo, B. (2011). Capacitated lot-sizing and scheduling with sequence-dependent, period-overlapping and non-triangular setups. Journal of Scheduling, 14(2), 209-219.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087-1092.
Meyr, H. (2002). Simultaneous lotsizing and scheduling on parallel machines. European Journal of Operational Research, 139(2), 277-292.
Mohan, S., Gopalakrishnan, M., Marathe, R., & Rajan, A. (2012). A note on modelling the capacitated lot-sizing problem with set-up carryover and set-up splitting. International Journal of Production Research, 50(19), 5538-5543.
Monma, C. L., & Potts, C. N. (1989). On the Complexity of Scheduling with Batch Setup Times. Operations Research, 37(5), 798-804.
Perregaard, M., & Clausen, J. (1998). Parallel branch-and-bound methods for thejob-shop scheduling problem. Annals of Operations Research, 83(0), 137-160.
Quadt, D., & Kuhn, H. (2005). Conceptual framework for lot-sizing and scheduling of flexible flow lines. International Journal of Production Research, 43(11), 2291-2308.
Rashidi, E., Jahandar, M., & Zandieh, M. (2010). An improved hybrid multi-objective parallel genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines. The International Journal of Advanced Manufacturing Technology, 49(9), 1129-1139.
Robinson Jr, E. P., & Sahin, F. (2001). Economic Production Lot Sizing with Periodic Costs and Overtime*. Decision Sciences, 32(3), 423-452.
Thiruvady, D., Ernst, A. T., & Singh, G. (2016). Parallel ant colony optimization for resource constrained job scheduling. Annals of Operations Research, 242(2), 355-372.
Toy, A. Ö., & Berk, E. (2006). Dynamic lot sizing problem for a warm/cold process. IIE Transactions, 38(11), 1027-1044.
Trigeiro, W. W., Thomas, L. J., & McClain, J. O. (1989). Capacitated Lot Sizing with Setup Times. Management Science, 35(3), 353-366.
Ullah, H., & Parveen, S. (2010). A Literature Review on Inventory Lot Sizing Problems. Global Journal of Researches in Engineering, 10(5).
Wang, H. C. (2017). A Mixed Integer Programming Model for Capacitated Lot Sizing and Scheduling Problem with Comprehensive Setup Considerations. (Master Degree), National Tsing Hua University, Taiwan R.O.C.
Wagner, H. M., & Whitin, T. M. (1958). Dynamic Version of the Economic Lot Size Model. Management Science, 5(1), 89-96.
Xiao, J., Yang, H., Zhang, C., Zheng, L., & Gupta, J. N. D. (2015). A hybrid Lagrangian-simulated annealing-based heuristic for the parallel-machine capacitated lot-sizing and scheduling problem with sequence-dependent setup times. Computers & Operations Research, 63, 72-82.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *