帳號:guest(18.188.224.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡孟航
作者(外文):Tsai, Meng-Hang
論文名稱(中文):考慮多種突發情境下之護士排班問題-以簡化群體演算法結合遺傳技巧求解
論文名稱(外文):Nurse Scheduling Problem: Considering several sudden incidents using Simplified Swarm Optimization with Genetic Techniques
指導教授(中文):葉維彰
指導教授(外文):Yeh, Wei-Chang
口試委員(中文):謝宗融
魏上佳
口試委員(外文):Hsieh, Tsung-Jung
WEI, SHANG-CHIA
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034533
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:護士排班簡化群體演算法突發情境遺傳技巧
外文關鍵詞:Nurse Scheduling ProblemSimplified Swarm Optimizationsudden incidentGenetic Technique
相關次數:
  • 推薦推薦:0
  • 點閱點閱:264
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
護士排班問題(Nurse Scheduling Problem, NSP)在過去的三十年被大量研究,NSP問題為一個典型的NP-hard問題。班表之優劣是一個會直接影響醫院營運的重要因素,隨著社會的進步與演變,台灣對於勞工的權益越來越重視,因此,在排定班表時更需注意每一位護士的休息時間與權益,才能保障每一位護士之勞工基本權益。與過往研究不同,本研究加入兩種突發情境之模型,在高度約束限制下,解決突發狀況是相當困難的,因此,本研究的問題比傳統的護士排班的問題更加的複雜且艱澀。
以往的手動排班需要耗費大量的時間與人力,許多學者進而透過各式各樣的方法來加快求解此問題,且都有良好的成效,而啟發式演算法與數學規劃法也被大量應用於此問題。其中,數學規劃法在面臨維度過高的NSP問題時,可能導致計算時間過長或無法求得最佳解,而啟發式演算法往往都能在有限的時間內求得近似最佳解的解。常見的啟發式演算法用於求解排班最佳化問題(Rostering Problem)有基因演算法(Genetic Algorithm, GA)、粒子群最佳化演算法(Particle Swarm Optimization, PSO)及模擬退火法(Simulated Annealing, SA)等等,近年來,簡化群體演算法(Simplified Swarm Optimization, SSO)在處理此種離散型的問題都有很亮眼的表現。
在本研究論文中,將採用簡化群體演算法(Simplified Swarm Optimization, SSO)結合遺傳技巧來解決的護士排班問題,並透過與其他著名的啟發式演算法進行比較,來證明SSO在處理離散型且高度約束問題的能力,並調整SSO之原始更新機制,加入遺傳技巧來加強SSO之尋優能力。此外,本研究提出了兩種突發情境,用以測試SSO在遇到突發事件時的解決能力,也能使排班者在發生突發事件時能快速做出決策。
Nurse Scheduling Problem (NSP) has been extensively discussed for the past three decades. The NSP is a typical NP-hard Problem. The quality of the schedule is an important factor that will directly affect the operation of the hospital. With the progress and evolution of the society, Taiwan pays more and more attention to the rights of the workers. Therefore, it is necessary to take care of every nurse when scheduling the class. Rest time and individual rights can protect the basic rights and interests of every nurse.
This study proposed two kinds of sudden incidents. It is quite difficult to solve the sudden incidents under the highly constrained. Therefore, this study is more complicated and difficult than the NSP before.
In the past, manual scheduling required a lot of time and manpower. Many scholars have adopted various methods to solve NSP. Heuristic Algorithms and Mathematical Programming have also been widely applied. Among them, when the mathematical Programming faces the NSP with too high dimension, it may lead to the calculation time being too long or the best solution cannot be obtained, and the Heuristic Algorithm can always find the approximate optimal solution in a limited time.
Common Heuristic Algorithms for solving rostering problem are Genetic Algorithm, Particle Swarm Optimization and Simulated Annealing. Simplified Swarm Optimization (SSO) has a very excellent performance in dealing with such discrete problems in recent years. In this research, the SSO and Genetic Techniques will be used to solve the NSP, and compared with other Heuristic Algorithms to prove the ability of SSO to deal with discrete and highly constrained problems. In addition, this study proposes two types of incidents to test the SSO's ability to resolve sudden incidents.
摘要 1
Abstract 2
目錄 3
表目錄 6
圖目錄 8
第 1 章 、緒論 9
1.1 研究背景 9
1.2 研究動機與目的 11
1.3 研究架構 12
第 2 章 、文獻回顧 14
2.1 排班問題 14
2.2 護士排班問題 15
2.3 啟發式演算法 (Heuristic Algorithm) 17
2.3.1 簡化群體演算法 (Simplified Swarm Optimization, SSO) 18
2.3.2 基因演算法 (Genetic Algorithm, GA) 19
2.3.3 粒子群演算法 (Particle Swarm Optimization, PSO) 19
2.3.4 模擬退火 (Simulated Annealing, SA) 20
2.4 文獻小節 20
第 3 章 、問題描述 21
3.1 問題假設 21
3.2 數學符號 22
3.2.1 索引、集合與參數 22
3.2.2 決策變數 23
3.3 數學模型 24
3.3.1 目標式 24
3.3.2 限制式 24
3.3.3 NSP問題懲罰函數計算之實例 28
第 4 章 、研究方法 29
4.1 編碼 29
4.2 初始解生成方式 30
4.3 簡化粒子群演算法 (Simplified Swarm Optimization) 33
4.3.1 演算法符號 33
4.3.2 演算法步驟與公式 34
4.4 演算法更新機制-遺傳技巧 (Genetic Technique) 38
4.5 突發狀況之模型 41
4.5.1 突發事件一 41
4.5.2 突發事件二 45
第 5 章 、實驗結果與分析 48
5.1 資料集 48
5.2 參數實驗設計 50
5.3 實驗結果 55
5.3.1 其他演算法之測試參數設定 55
5.3.2 小型資料集實驗結果 (MD 1) 56
5.3.3 中型資料集實驗結果 (NICU) 58
5.3.4 大型資料集實驗結果 (GICU) 59
5.3.5 相同運算時間下個演算法之實驗結果 61
5.4 資料實驗結果分析及驗證 62
5.5 實驗結果-突發狀況 64
第 6 章 、結論與未來研究方向 67
6.1 結論 67
6.2 未來研究方向 68
參考文獻 70
附錄 77
[1] H. E. Miller, W. P. Pierskalla, and G. J. Rath, "Nurse scheduling using mathematical programming", Operations Research, vol. 24, no. 5, pp. 857-870, 1976.
[2] J. Beliën and E. Demeulemeester ", A branch-and-price approach for integrating nurse and surgery scheduling," European journal of operational research, vol. 189, no. 3, pp. 652-668, 2008.
[3] J. F. Bard and H. W. Purnomo", Cyclic preference scheduling of nurses using a Lagrangian-based heuristic," Journal of Scheduling, vol. 10, no. 1, pp. 5-23, 2007.
[4] U. Aickelin and J. Li, "An estimation of distribution algorithm for nurse scheduling", Annals of Operations Research, vol. 155, no. 1, pp. 289-309, 2007.
[5] H. W. Purnomo and J. F. Bard, "Cyclic preference scheduling for nurses using branch and price", Naval Research Logistics (NRL), vol. 54, no. 2, pp. 200-220, 2007.
[6] C. Valouxis and E. Housos, "Hybrid optimization techniques for the workshift and rest assignment of nursing personnel", Artificial Intelligence in Medicine, vol. 20, no. 2, pp. 155-175, 2000.
[7] P.-C. Lin et al., "The association between rotating shift work and increased occupational stress in nurses", Journal of occupational health, pp. 13-0284-OA, 2015.
[8] L. C. Coffey, J. K. Skipper Jr, and F. D. Jung, "Nurses and shift work: effects on job performance and job‐related stress", Journal of advanced nursing, vol. 13, no. 2, pp. 245-254, 1988.
[9] D. R. Gold et al., "Rotating shift work, sleep, and accidents related to sleepiness in hospital nurses", American journal of public health, vol. 82, no. 7, pp. 1011-1014, 1992.
[10] M. Tahghighi, C. S. Rees, J. A. Brown, L. J. Breen, and D. Hegney, "What is the impact of shift work on the psychological functioning and resilience of nurses? An integrative review", Journal of advanced nursing, vol. 73, no. 9, pp. 2065-2083, 2017.
[11] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, "Staff scheduling and rostering: A review of applications, methods and models", European journal of operational research, vol. 153, no. 1, pp. 3-27, 2004.
[12] E. K. Burke, P. De Causmaecker, G. V. Berghe, and H. Van Landeghem, "The state of the art of nurse rostering", Journal of scheduling, vol. 7, no. 6, pp. 441-499, 2004.
[13] M. N. Azaiez and S. S. Al Sharif, "A 0-1 goal programming model for nurse scheduling", Computers & Operations Research, vol. 32, no. 3, pp. 491-507, 2005.
[14] B. Jaumard, F. Semet, and T. Vovor, "A generalized linear programming model for nurse scheduling", European journal of operational research, vol. 107, no. 1, pp. 1-18, 1998.
[15] H. Beaulieu, J. A. Ferland, B. Gendron, and P. Michelon, "A mathematical programming approach for scheduling physicians in the emergency room", Health care management science, vol. 3, no. 3, pp. 193-200, 2000.
[16] D. M. Warner and J. Prawda, "A mathematical programming model for scheduling nursing personnel in a hospital", Management Science, vol. 19, no. 4-part-1, pp. 411-422, 1972.
[17] L. Trilling, A. Guinet, and D. Le Magny, "Nurse scheduling using integer linear programming and constraint programming", IFAC Proceedings Volumes, vol. 39, no. 3, pp. 671-676, 2006.
[18] W. J. Gutjahr and M. S. Rauner, "An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria", Computers & Operations Research, vol. 34, no. 3, pp. 642-666, 2007.
[19] M. Hadwan and M. Ayob, "A constructive shift patterns approach with simulated annealing for nurse rostering problem", in 2010 International Symposium on Information Technology, 2010, vol. 1: IEEE, pp. 1-6.
[20] U. Aickelin and K. A. Dowsland, "An indirect genetic algorithm for a nurse-scheduling problem", Computers & Operations Research, vol. 31, no. 5, pp. 761-778, 2004.
[21] E. Burke, P. Cowling, P. De Causmaecker, and G. V. Berghe, "A memetic approach to the nurse rostering problem", Applied intelligence, vol. 15, no. 3, pp. 199-214, 2001.
[22] M. Ramli, B. Hussin, Z. Abas, and N. Ibrahim, "Solving complex nurse scheduling problems using particle swarm optimization", International Review on Computers and Software, vol. 11, no. 8, 2007.
[23] X. Zhong, J. Zhang, and X. Zhang, "A two-stage heuristic algorithm for the nurse scheduling problem with fairness objective on weekend workload under different shift designs", IISE Transactions on Healthcare Systems Engineering, vol. 7, no. 4, pp. 224-235, 2017.
[24] L. Altamirano, M.-C. Riff, and L. Trilling, "A PSO algorithm to solve a real anaesthesiology nurse scheduling problem", in 2010 International Conference of Soft Computing and Pattern Recognition, 2010: IEEE, pp. 139-144.
[25] H. Kawanaka, K. Yamamoto, T. Yoshikawa, T. Shinogi, and S. Tsuruoka, "Genetic algorithm with the constraints for nurse scheduling problem", in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), 2001, vol. 2: IEEE, pp. 1123-1130.
[26] W.-C. Yeh, "A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems", Expert Systems with Applications, vol. 36, no. 5, pp. 9192-9200, 2009.
[27] W.-C. Yeh, "An improved simplified swarm optimization", Knowledge-Based Systems, vol. 82, pp. 60-69, 2015.
[28] X. Cai and K. Li, "A genetic algorithm for scheduling staff of mixed skills under multi-criteria", European Journal of Operational Research, vol. 125, no. 2, pp. 359-369, 2000.
[29] C. M. Hughes, R. M. Wright, and K. L. Lapane, "Use of medication technicians in US nursing homes: part of the problem or part of the solution?", Journal of the American Medical Directors Association, vol. 7, no. 5, pp. 294-304, 2006.
[30] E. Sharif, M. Ayob, and M. Hadwan, "Hybridization of heuristic approach with variable neighborhood descent search to solve nurse Rostering problem at Universiti Kebangsaan Malaysia Medical Centre (UKMMC)", in 2011 3rd Conference on Data Mining and Optimization (DMO), 2011: IEEE, pp. 178-183.
[31] M. Jamom, M. Ayob, and M. Hadwan, "A greedy constructive approach for nurse rostering problem", in 2011 3rd Conference on Data Mining and Optimization (DMO), 2011: IEEE, pp. 227-231.
[32] M. Hadwan and M. B. Ayob, "An exploration study of nurse rostering practice at Hospital Universiti Kebangsaan Malaysia", in 2009 2nd Conference on Data Mining and Optimization, 2009: IEEE, pp. 100-107.
[33] M. Hadwan and M. Ayob, "A semi-cyclic shift patterns approach for nurse rostering problems", in 2011 3rd Conference on Data Mining and Optimization (DMO), 2011: IEEE, pp. 184-189.
[34] R. A. Abobaker, M. Ayob, and M. Hadwan, "Greedy constructive heuristic and local search algorithm for solving Nurse Rostering Problems", in 2011 3rd Conference on Data Mining and Optimization (DMO), 2011: IEEE, pp. 194-198.
[35] C.-L. Huang, "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems", Reliability Engineering & System Safety, vol. 142, pp. 221-230, 2015.
[36] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory", in MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995: IEEE pp. 39-43.
[37] J. H. Holland, "Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence", MIT press, 1992.
[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing", science, vol. 220, no. 4598, pp. 671-680, 1983.
[39] Y. Y. Chung and N. Wahid, "A hybrid network intrusion detection system using simplified swarm optimization (SSO)", Applied Soft Computing, vol. 12, no. 9, pp. 3014-3022, 2012.
[40] W.-C. Yeh, "New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series", IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 4, pp. 661-665, 2013.
[41] W.-C. Yeh, "Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization", IEEE transactions on systems, man, and cybernetics-part A: systems and humans, vol. 42, no. 1, pp. 250-261, 2011.
[42] L. Altamirano, M. C. Riff, I. Araya, and L. Trilling, "Anesthesiology nurse scheduling using particle swarm optimization", International Journal of Computational Intelligence Systems, vol. 5, no. 1, pp. 111-125, 2012.
[43] F. F. Easton and N. Mansour, "A distributed genetic algorithm for deterministic and stochastic labor scheduling problems", European Journal of Operational Research, vol. 118, no. 3, pp. 505-523, 1999.
[44] N. M. Rasip, A. Basari, N. K. Ibrahim, and B. Hussin, "Enhancement of nurse scheduling steps using particle swarm optimization", in Advanced Computer and Communication Engineering Technology: Springer, 2015, pp. 459-469.
[45] C.-C. Lin, J.-R. Kang, D.-J. Chiang, and C.-L. Chen, "Nurse scheduling with joint normalized shift and day-off preference satisfaction using a genetic algorithm with immigrant scheme", International Journal of Distributed Sensor Networks, vol. 11, no. 7, p. 595419, 2015.
[46] M. Hadwan, M. Ayob, N. R. Sabar, and R. Qu, "A harmony search algorithm for nurse rostering problems", Information Sciences, vol. 233, pp. 126-140, 2013.
[47] I. X. Tassopoulos and G. N. Beligiannis, "A hybrid particle swarm optimization based algorithm for high school timetabling problems", applied soft computing, vol. 12, no. 11, pp. 3472-3489, 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *